Packages

  • package root
    Definition Classes
    root
  • package org
    Definition Classes
    root
  • package opalj

    OPAL is a Scala-based framework for the static analysis, manipulation and creation of Java bytecode.

    OPAL is a Scala-based framework for the static analysis, manipulation and creation of Java bytecode. OPAL is designed with performance, scalability and adaptability in mind.

    Its main components are:

    • a library (Common) which provides generally useful data-structures and algorithms for static analyses.
    • a framework for parsing Java bytecode (Bytecode Infrastructure) that can be used to create arbitrary representations.
    • a library to create a one-to-one in-memory representation of Java bytecode (Bytecode Disassembler).
    • a library to create a representation of Java bytecode that facilitates writing simple static analyses (Bytecode Representation - org.opalj.br).
    • a scalable, easily customizable framework for the abstract interpretation of Java bytecode (Abstract Interpretation Framework - org.opalj.ai).
    • a library to extract dependencies between code elements and to facilitate checking architecture definitions.
    • a library for the lightweight manipulation and creation of Java bytecode.

    General Design Decisions

    Thread Safety

    Unless explicitly noted, OPAL is thread safe. I.e., the classes defined by OPAL can be considered to be thread safe unless otherwise stated. (For example, it is possible to read and process class files concurrently without explicit synchronization on the client side.)

    No null Values

    Unless explicitly noted, OPAL does not null values I.e., fields that are accessible will never contain null values and methods will never return null. If a method accepts null as a value for a parameter or returns a null value it is always explicitly documented. In general, the behavior of methods that are passed null values is undefined unless explicitly documented.

    No Typecasts for Collections

    For efficiency reasons, OPAL sometimes uses mutable data-structures internally. After construction time, these data-structures are generally represented using their generic interfaces (e.g., scala.collection.{Set,Map}). However, a downcast (e.g., to add/remove elements) is always forbidden as it would effectively prevent thread-safety. Furthermore, the concrete data-structure is always considered an implementation detail and may change at any time.

    Assertions

    OPAL makes heavy use of Scala's Assertion Facility to facilitate writing correct code. Hence, for production builds (after thorough testing(!)) it is highly recommend to build OPAL again using -Xdisable-assertions.

    Definition Classes
    org
  • package ai

    Implementation of an abstract interpretation (ai) framework – also referred to as OPAL.

    Implementation of an abstract interpretation (ai) framework – also referred to as OPAL.

    Please note, that OPAL/the abstract interpreter just refers to the classes and traits defined in this package (ai). The classes and traits defined in the sub-packages (in particular in domain) are not considered to be part of the core of OPAL/the abstract interpreter.

    Definition Classes
    opalj
    Note

    This framework assumes that the analyzed bytecode is valid; i.e., the JVM's bytecode verifier would be able to verify the code. Furthermore, load-time errors (e.g., LinkageErrors) are – by default – completely ignored to facilitate the analysis of parts of a project. In general, if the presented bytecode is not valid, the result is undefined (i.e., OPAL may report meaningless results, crash or run indefinitely).

    See also

    org.opalj.ai.Domain - The core interface between the abstract interpretation framework and the abstract domain that is responsible for performing the abstract computations.

    org.opalj.ai.AI - Implements the abstract interpreter that processes a methods code and uses an analysis-specific domain to perform the abstract computations.

  • package domain

    This package contains definitions of common domains that can be used for the implementation of analyses.

    This package contains definitions of common domains that can be used for the implementation of analyses.

    Types of Domains

    In general, we distinguish two types of domains. First, domains that define a general interface (on top of the one defined by Domain), but do not directly provide an implementation. Hence, whenever you develop a new Domain you should consider implementing/using these domains to maximize reusability. Second, Domains that implement a specific interface (trait). In this case, we further distinguish between domains that provide a default implementation (per interface only one of these Domains can be used to create a final Domain) and those that can be stacked and basically refine the overall functionality.

    Examples

    • Domains That Define a General Interface
      • Origin defines two types which domains that provide information abou the origin of a value should consider to implement.
      • TheProject defines a standard mechanism how a domain can access the current project.
      • TheClassHierarchy defines a standard mechanism how to get the project's class hierarchy.
      • ...
    • Domains That Provide a Default Implementation
      • Origin defines the functionality to return a value's origin if the value supports that.
      • TheProject default implementation of the TheClassHierarchy trait that uses the project's class hierarchy.
      • DefaultHandlingOfMethodResults basically implements a Domain's methods related to return instructions an uncaught exceptions.
      • ...
    • Domains That Implement Stackable Functionality
      • RecordThrownExceptions records information about all uncaught exceptions by intercepting a Domain's respective methods. However, it does provide a default implementation. Hence, a typical pattern is:
    class MyDomain extends Domain with ...
        with DefaultHandlingOfMethodResults with RecordThrownExceptions

    Thread Safety

    Unless explicitly documented, a domain is never thread-safe. The general programming model is to use one Domain object per code block/method and therefore, thread-safety is not required for Domains that are used for the evaluation of methods. However domains that are used to adapt/transfer values should be thread safe (see ValuesCoordinatingDomain for further details).

    Definition Classes
    ai
  • package l1

    Commonly useful methods.

    Commonly useful methods.

    Definition Classes
    domain
  • ArrayValues
  • ClassValues
  • ConcretePrimitiveValuesConversions
  • ConstraintsBetweenIntegerValues
  • DefaultArrayValuesBinding
  • DefaultClassValuesBinding
  • DefaultDomain
  • DefaultDomainWithCFG
  • DefaultDomainWithCFGAndDefUse
  • DefaultIntegerRangeValues
  • DefaultIntegerSetValues
  • DefaultIntegerValues
  • DefaultIntervalValuesDomain
  • DefaultJavaObjectToDomainValueConversion
  • DefaultLongSetValues
  • DefaultLongValues
  • DefaultReferenceValuesBinding
  • DefaultReferenceValuesDomain
  • DefaultSetValuesDomain
  • DefaultSingletonValuesDomain
  • DefaultStringValuesBinding
  • IfNullParameterAnalysis
  • IntegerRangeValues
  • IntegerSetValues
  • IntegerValues
  • LongSetValues
  • LongSetValuesShiftOperators
  • LongValues
  • LongValuesShiftOperators
  • MaxArrayLengthRefinement
  • MethodReturnValuesAnalysis
  • NullPropertyRefinement
  • OwnershipAnalysis
  • RecordAllThrownExceptions
  • ReferenceValues
  • RefinedReturnType
  • ReflectiveInvoker
  • SimpleDefUseAnalysis
  • StringBuilderValues
  • StringValues

trait IntegerRangeValues extends IntegerValuesDomain with IntegerRangeValuesFactory with ConcreteIntegerValues

This domain represents integer values using ranges.

The cardinality of the range can be configured to satisfy different needs with regard to the desired precision (maxCardinalityOfIntegerRanges). Often, a very small cardinality (e.g., between 2 and 8) may be completely sufficient and a large cardinality does not add the overall precision significantly and just increases the analysis time.

Constraint Propagation

This domain facilitates and performs constraint propagation (e.g., intEstablishValue, intEstablishIsLessThan,...). Two integer (range) values (ir1,ir2) are reference equal (eq in Scala) iff both represent the same runtime value.

In other words, the implementation ensures that two int values that are known to have the same value – even though the precise value may not be known – are represented using the same object. Furthermore, two int values that are not known to represent the same value at runtime are always represented using different objects. For example, consider the following sequence:

  • pcA+0/t1: iadd (Stack: 1 :: AnIntegerValue :: ...; Registers: <ignored>)
  • pcA+1/t2: dup (Stack: v(pcA/t1) :: ...; Registers: <ignored>)
  • pcA+2/t3: iflt true:+10 (Stack: v(pcA/t1) :: v(pcA/t1) :: ...; Registers: <ignored>)
  • pcA+3/t4: ... (Stack: v(pcA/t1) >= 0 :: ...; Registers: <ignored>)
  • pcA+XYZ...
  • pcA+12/t5: ... (Stack: v(pcA/t1) < 0 :: ...; Registers: <ignored>)

Here, the test (iflt) of the topmost stack value against the constant 0 constraints the second topmost stack value. Both (abstract) values are guaranteed to represent the same value at runtime even though the concrete value may be unknown. In this case, the value was even created at the same point in time.

In case of this domain the reference of the Domain(Integer)Value is used to identify those values that were created at the same point in time and hence, have the same properties.

E.g., consider the following fictitious sequence:

  • iconst2 ...
    • Stack: EMPTY
    • Locals: EMPTY
  • dup ...
    • Stack: IntegerRangeValue(2,2)@123456;
    • Locals: EMPTY
  • istore_0 ...
    • Stack: IntegerRangeValue(2,2)@123456 <- IntegerRangeValue(2,2)@123456;
    • Locals: EMPTY
  • iconst2 ...
    • Stack: IntegerRangeValue(2,2)@123456;
    • Locals: 0=IntegerRangeValue(2,2)@123456, 1=EMPTY
  • istore_1 ...
    • Stack: IntegerRangeValue(2,2)@654321 <- IntegerRangeValue(2,2)@123456;
    • Locals: 0=IntegerRangeValue(2,2)@123456, 1=EMPTY
  • ...
    • Stack: IntegerRangeValue(2,2)@123456;
    • Locals: 0=IntegerRangeValue(2,2)@123456, 1=IntegerRangeValue(2,2)@654321

Additionally, if the sequence would be part of a loop, the next iteration would create new IntegerRangeValues.

Implementation Requirements

Subclasses are required to create new instances of IntegerRangeValues and AnIntegerValue whenever a computation is performed that may affect the runtime value. If this property is not satisfied the implemented constraint propagation mechanism will produce unpredictable results as it may constrain unrelated values! This is true for concrete ranges as well as AnIntegerValues.

Self Type
IntegerRangeValues with CorrelationalDomainSupport with Configuration with ExceptionsFactory
Source
IntegerRangeValues.scala
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IntegerRangeValues
  2. ConcreteIntegerValues
  3. IntegerRangeValuesFactory
  4. IntegerValuesDomain
  5. IntegerValuesFactory
  6. ValuesDomain
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. class IllegalValue extends Value

    Represents a value that has no well defined state/type.

    Represents a value that has no well defined state/type. Such values are the result of a join of two incompatible values and are generally only found in registers (in the locals) and then identify a value that is dead.

    Attributes
    protected
    Definition Classes
    ValuesDomain
    See also

    org.opalj.ai.Domain.Value for further details.

  2. trait RETValue extends Value
    Definition Classes
    ValuesDomain
  3. trait ReferenceValue extends TypedValue[ReferenceType] with IsReferenceValue[DomainReferenceValue]
    Definition Classes
    ValuesDomain
  4. class ReturnAddressValue extends RETValue

    Stores a single return address (i.e., a program counter/index into the code array).

    Stores a single return address (i.e., a program counter/index into the code array).

    Definition Classes
    ValuesDomain
    Note

    Though the framework completely handles all aspects related to return address values, it is nevertheless necessary that this class inherits from Value as return addresses are stored on the stack/in the registers. However, if the Value trait should be refined, all additional methods may – from the point-of-view of OPAL-AI - just throw an OperationNotSupportedException as these additional methods will never be called by OPAL-AI.

  5. class ReturnAddressValues extends RETValue

    A collection of (not furhter stored) return address values.

    A collection of (not furhter stored) return address values. Primarily used when we join the executions of subroutines.

    Definition Classes
    ValuesDomain
  6. trait TypedValue[+T <: Type] extends Value with KnownType
    Definition Classes
    ValuesDomain
  7. trait Value extends AnyRef

    Abstracts over a concrete operand stack value or a value stored in one of the local variables/registers.

    Abstracts over a concrete operand stack value or a value stored in one of the local variables/registers.

    Use Of Value/Dependencies On Value

    In general, subclasses and users of a Domain should not have/declare a direct dependency on Value. Instead they should use DomainValue as otherwise extensibility of a Domain may be hampered or even be impossible. The only exceptions are, of course, classes that directly inherit from this class.

    Refining Value

    If you directly extend/refine this trait (i.e., in a subclass of the Domain trait you write something like trait Value extends super.Value), make sure that you also extend all classes/traits that inherit from this type (this may require a deep mixin composition and that you refine the type DomainType accordingly). However, OPAL was designed such that extending this class should – in general – not be necessary. It may also be easier to encode the desired semantics – as far as possible – as part of the domain.

    Implementing Value

    Standard inheritance from this trait is always supported and is the primary mechanism to model an abstract domain's lattice w.r.t. some special type of value. In general, the implementation should try to avoid creating new instances of values unless strictly required to model the domain's semantics. This will greatly improve the overall performance as this framework heavily uses reference-based equality checks to speed up the evaluation.

    Definition Classes
    ValuesDomain
    Note

    OPAL does not rely on any special equality semantics w.r.t. values and never directly or indirectly calls a Value's equals or eq method. Hence, a domain can encode equality such that it best fits its need. However, some of the provided domains rely on the following semantics for equals: Two domain values have to be equal (==) iff they represent the same information. This includes additional information, such as, the value of the origin. E.g., a value (AnIntegerValue) that represents an arbitrary Integer value has to return true if the domain value with which it is compared also represents an arbitrary Integer value (AnIntegerValue). However, it may still be necessary to use multiple objects to represent an arbitrary integer value if, e.g., constraints should be attached to specific values. For example, after a comparison of an integer value with a predefined value (e.g., AnIntegerValue < 4) it is possible to constrain the respective value on the subsequent paths (< 4 on one path and >= 4 on the other path). To make that possible, it is however necessary to distinguish the AnIntegervalue from some other AnIntegerValue to avoid constraining unrelated values.

    public void foo(int a,int b) {
        if(a < 4) {
            z = a - 2 // here a is constrained (< 4), b and z are unconstrained
        }
        else {
            z = a + 2 // here a is constrained (>= 4), b and z are unconstrained
        }
    }

    In general, equals is only defined for values belonging to the same domain. If values need to be compared across domains, they need to be adapted to a target domain first.

  8. trait AnIntegerValue extends (IntegerRangeValues.this)#IntegerLikeValue

    Represents an (unknown) integer value.

    Represents an (unknown) integer value.

    Models the top value of this domain's lattice.

  9. abstract type DomainIllegalValue <: (IntegerRangeValues.this)#IllegalValue with (IntegerRangeValues.this)#DomainValue

    Abstracts over the concrete type of IllegalValue.

    Abstracts over the concrete type of IllegalValue.

    This type needs to be refined whenever the class IllegalValue is refined or the type DomainValue is refined.

    Definition Classes
    ValuesDomain
  10. abstract type DomainReferenceValue >: Null <: (IntegerRangeValues.this)#ReferenceValue with (IntegerRangeValues.this)#DomainTypedValue[ReferenceType]
    Definition Classes
    ValuesDomain
  11. abstract type DomainReturnAddressValue <: (IntegerRangeValues.this)#ReturnAddressValue with (IntegerRangeValues.this)#DomainValue

    Abstracts over the concrete type of ReturnAddressValue.

    Abstracts over the concrete type of ReturnAddressValue. Needs to be fixed by some sub-trait/sub-class. In the simplest case (i.e., when neither the Value trait nor the ReturnAddressValue trait was refined) it is sufficient to write:

    type DomainReturnAddressValue = ReturnAddressValue
    Definition Classes
    ValuesDomain
  12. abstract type DomainReturnAddressValues <: (IntegerRangeValues.this)#ReturnAddressValues with (IntegerRangeValues.this)#DomainValue
    Definition Classes
    ValuesDomain
  13. abstract type DomainTypedValue[+T <: Type] >: Null <: (IntegerRangeValues.this)#DomainValue
    Definition Classes
    ValuesDomain
  14. abstract type DomainValue >: Null <: (IntegerRangeValues.this)#Value

    Abstracts over the concrete type of Value.

    Abstracts over the concrete type of Value. Needs to be refined by traits that inherit from Domain and which extend Domain's Value trait.

    Definition Classes
    ValuesDomain
  15. type ExceptionValue = (IntegerRangeValues.this)#DomainReferenceValue

    A simple type alias of the type DomainValue; used to facilitate comprehension.

    A simple type alias of the type DomainValue; used to facilitate comprehension.

    Definition Classes
    ValuesDomain
  16. type ExceptionValues = Iterable[(IntegerRangeValues.this)#ExceptionValue]

    A type alias for Iterables of ExceptionValues; used to facilitate comprehension.

    A type alias for Iterables of ExceptionValues; used to facilitate comprehension.

    Definition Classes
    ValuesDomain
  17. sealed trait IntegerLikeValue extends (IntegerRangeValues.this)#TypedValue[CTIntType] with IsIntegerValue[(IntegerRangeValues.this)#IntegerLikeValue]

    Abstracts over all values with computational type integer.

  18. abstract class IntegerRange extends (IntegerRangeValues.this)#IntegerLikeValue

    Represents a range of integer values.

    Represents a range of integer values. The range's bounds are inclusive. Unless a range has only one value it is impossible to tell whether or not a value that is in the range will potentially occur at runtime.

  19. type IntegerValueOrArithmeticException = Computation[(IntegerRangeValues.this)#DomainValue, (IntegerRangeValues.this)#ExceptionValue]

    Computation that returns a numeric value or an ObjectType.ArithmeticException.

    Computation that returns a numeric value or an ObjectType.ArithmeticException.

    Definition Classes
    IntegerValuesDomain
  20. type Locals = collection.mutable.Locals[(IntegerRangeValues.this)#DomainValue]

    An instruction's current register values/locals are represented using an array.

    An instruction's current register values/locals are represented using an array.

    Definition Classes
    ValuesDomain
  21. type LocalsArray = Array[(IntegerRangeValues.this)#Locals]
    Definition Classes
    ValuesDomain
  22. type Operands = Chain[(IntegerRangeValues.this)#DomainValue]

    An instruction's operands are represented using a list where the first element of the list represents the top level operand stack value.

    An instruction's operands are represented using a list where the first element of the list represents the top level operand stack value.

    Definition Classes
    ValuesDomain
  23. type OperandsArray = Array[(IntegerRangeValues.this)#Operands]
    Definition Classes
    ValuesDomain

Abstract Value Members

  1. abstract def BooleanValue(origin: ValueOrigin, value: Boolean): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Factory method to create a representation of a boolean value with the given initial value and origin.

    Factory method to create a representation of a boolean value with the given initial value and origin.

    The domain may ignore the information about the value and the origin (origin).

    Definition Classes
    IntegerValuesFactory
  2. abstract def BooleanValue(origin: ValueOrigin): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Factory method to create a representation of a boolean value if we know the origin of the value.

    Factory method to create a representation of a boolean value if we know the origin of the value.

    The domain may ignore the information about the origin (origin).

    Definition Classes
    IntegerValuesFactory
  3. abstract def ByteValue(origin: ValueOrigin, value: Byte): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Factory method to create a DomainValue that represents the given byte value and that was created (explicitly or implicitly) by the instruction with the specified program counter.

    Factory method to create a DomainValue that represents the given byte value and that was created (explicitly or implicitly) by the instruction with the specified program counter.

    The domain may ignore the information about the value and the origin (origin).

    Definition Classes
    IntegerValuesFactory
  4. abstract def ByteValue(origin: ValueOrigin): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Factory method to create a DomainValue that was created (explicitly or implicitly) by the instruction with the specified program counter.

    Factory method to create a DomainValue that was created (explicitly or implicitly) by the instruction with the specified program counter.

    The domain may ignore the information about the origin (origin).

    Definition Classes
    IntegerValuesFactory
  5. abstract def CharValue(origin: ValueOrigin, value: Char): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Factory method to create a DomainValue that represents the given char value and that was created (explicitly or implicitly) by the instruction with the specified program counter.

    Factory method to create a DomainValue that represents the given char value and that was created (explicitly or implicitly) by the instruction with the specified program counter.

    Definition Classes
    IntegerValuesFactory
  6. abstract def CharValue(origin: ValueOrigin): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Factory method to create a DomainValue that was created (explicitly or implicitly) by the instruction with the specified program counter.

    Factory method to create a DomainValue that was created (explicitly or implicitly) by the instruction with the specified program counter.

    The domain may ignore the information about the origin (origin).

    Definition Classes
    IntegerValuesFactory
  7. abstract val DomainReferenceValue: ClassTag[(IntegerRangeValues.this)#DomainReferenceValue]

    The class tag can be used to create type safe arrays or to extract the concrete type of the domain value.

    The class tag can be used to create type safe arrays or to extract the concrete type of the domain value.

    val DomainReferenceValue(v) = value // of type "DomainValue"
    // v is now of the type DomainReferenceValue
    Definition Classes
    ValuesDomain
  8. implicit abstract val DomainValue: ClassTag[(IntegerRangeValues.this)#DomainValue]

    The class tag for the type DomainValue.

    The class tag for the type DomainValue.

    Required to generate instances of arrays in which values of type DomainValue can be stored in a type-safe manner.

    Initialization

    In the sub-trait or class that fixes the type of DomainValue it is necessary to implement this abstract val using:

    val DomainValueTag : ClassTag[DomainValue] = implicitly

    (As of Scala 2.10 it is necessary that you do not use implicit in the subclass - it will compile, but fail at runtime.)

    Definition Classes
    ValuesDomain
  9. abstract def IntegerRange(lb: Int, ub: Int): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Creates a new IntegerRange value with the given bounds.

  10. abstract def IntegerValue(origin: ValueOrigin, value: Int): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Factory method to create a DomainValue that represents the given integer value and that was created (explicitly or implicitly) by the instruction with the specified program counter.

    Factory method to create a DomainValue that represents the given integer value and that was created (explicitly or implicitly) by the instruction with the specified program counter.

    The domain may ignore the information about the value and the origin (origin).

    Definition Classes
    IntegerValuesFactory
  11. abstract def IntegerValue(origin: ValueOrigin): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Factory method to create a DomainValue that was created (explicitly or implicitly) by the instruction with the specified program counter.

    Factory method to create a DomainValue that was created (explicitly or implicitly) by the instruction with the specified program counter.

    The domain may ignore the information about the origin (origin).

    Definition Classes
    IntegerValuesFactory
  12. abstract def MetaInformationUpdateIllegalValue: MetaInformationUpdate[(IntegerRangeValues.this)#DomainIllegalValue]

    The result of the merge of two incompatible values has to be reported as a MetaInformationUpdate[DomainIllegalValue].

    The result of the merge of two incompatible values has to be reported as a MetaInformationUpdate[DomainIllegalValue].

    Definition Classes
    ValuesDomain
  13. abstract def ReturnAddressValue(address: PC): (IntegerRangeValues.this)#DomainReturnAddressValue

    Factory method to create an instance of a ReturnAddressValue.

    Factory method to create an instance of a ReturnAddressValue.

    Definition Classes
    ValuesDomain
  14. abstract def ShortValue(origin: ValueOrigin, value: Short): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Factory method to create a DomainValue that represents the given short value and that was created (explicitly or implicitly) by the instruction with the specified program counter.

    Factory method to create a DomainValue that represents the given short value and that was created (explicitly or implicitly) by the instruction with the specified program counter.

    Definition Classes
    IntegerValuesFactory
  15. abstract def ShortValue(origin: ValueOrigin): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Factory method to create a DomainValue that was created (explicitly or implicitly) by the instruction with the specified program counter.

    Factory method to create a DomainValue that was created (explicitly or implicitly) by the instruction with the specified program counter.

    The domain may ignore the information about the origin (origin).

    Definition Classes
    IntegerValuesFactory
  16. abstract val TheIllegalValue: (IntegerRangeValues.this)#DomainIllegalValue

    The singleton instance of the IllegalValue.

    The singleton instance of the IllegalValue.

    Definition Classes
    ValuesDomain
  17. abstract val TheReturnAddressValues: (IntegerRangeValues.this)#DomainReturnAddressValues

    The singleton instance of ReturnAddressValues

    The singleton instance of ReturnAddressValues

    Definition Classes
    ValuesDomain

Concrete Value Members

  1. object ConcreteIntegerValue
    Definition Classes
    ConcreteIntegerValues
  2. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  3. final def ##(): Int
    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final def IntegerConstant0: (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Factory method to create a representation of the integer constant value 0.

    Factory method to create a representation of the integer constant value 0.

    OPAL in particular uses this special value for performing subsequent computations against the fixed value 0 (e.g., for if_XX instructions).

    (The origin (ValueOrigin) that is used is the ConstantValueOrigin to signify that this value was not created by the program.)

    The domain may ignore the information about the value.

    Definition Classes
    IntegerValuesFactory
  6. final def IntegerRange(origin: ValueOrigin, lowerBound: Int, upperBound: Int): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Creates a new IntegerRange value with the given bounds.

    Creates a new IntegerRange value with the given bounds.

    Definition Classes
    IntegerRangeValuesIntegerRangeValuesFactory
  7. def IntegerRange(value: Int): (IntegerRangeValues.this)#DomainTypedValue[CTIntType]

    Creates a new IntegerRange value with the lower and upper bound set to the given value.

  8. final def StructuralUpdateIllegalValue: StructuralUpdate[Nothing]

    The result of merging two values should never be reported as a StructuralUpdate if the computed value is an IllegalValue.

    The result of merging two values should never be reported as a StructuralUpdate if the computed value is an IllegalValue. The JVM semantics guarantee that the value will not be used and, hence, continuing the interpretation is meaningless.

    Definition Classes
    ValuesDomain
    Note

    This method is solely defined for documentation purposes and to catch implementation errors early on.

  9. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  10. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  11. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  13. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  16. def i2b(pc: PC, value: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  17. def i2c(pc: PC, value: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  18. def i2s(pc: PC, value: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  19. def iadd(pc: PC, value1: (IntegerRangeValues.this)#DomainValue, value2: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  20. def iand(pc: PC, value1: (IntegerRangeValues.this)#DomainValue, value2: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  21. def idiv(pc: PC, numerator: (IntegerRangeValues.this)#DomainValue, denominator: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#IntegerValueOrArithmeticException
  22. def iinc(pc: PC, value: (IntegerRangeValues.this)#DomainValue, increment: Int): (IntegerRangeValues.this)#DomainValue
  23. def imul(pc: PC, value1: (IntegerRangeValues.this)#DomainValue, value2: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  24. def ineg(pc: PC, value: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  25. def intAreEqual(pc: PC, value1: (IntegerRangeValues.this)#DomainValue, value2: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the two given integer values are equal.

    Tests if the two given integer values are equal.

    value1

    A value with computational type integer.

    value2

    A value with computational type integer.

    Definition Classes
    IntegerRangeValuesIntegerValuesDomain
  26. def intAreNotEqual(pc: PC, value1: (IntegerRangeValues.this)#DomainValue, value2: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the two given integer values are not equal.

    Tests if the two given integer values are not equal.

    value1

    A value with computational type integer.

    value2

    A value with computational type integer.

    Definition Classes
    IntegerValuesDomain
  27. def intEstablishAreEqual(pc: PC, value1: (IntegerRangeValues.this)#DomainValue, value2: (IntegerRangeValues.this)#DomainValue, operands: (IntegerRangeValues.this)#Operands, locals: (IntegerRangeValues.this)#Locals): ((IntegerRangeValues.this)#Operands, (IntegerRangeValues.this)#Locals)

    Definition Classes
    IntegerRangeValuesIntegerValuesDomain
    Note

    This function is ONLY defined if a corresponding test (value1 == value2) returned org.opalj.Unknown. I.e., this method is only allowed to be called if there is something to establish! I.e., the domain values are real ranges (not single values, e.g., [1,1]) that overlap.

  28. def intEstablishAreNotEqual(pc: PC, value1: (IntegerRangeValues.this)#DomainValue, value2: (IntegerRangeValues.this)#DomainValue, operands: (IntegerRangeValues.this)#Operands, locals: (IntegerRangeValues.this)#Locals): ((IntegerRangeValues.this)#Operands, (IntegerRangeValues.this)#Locals)

    Definition Classes
    IntegerRangeValuesIntegerValuesDomain
    Note

    This function is ONLY defined if a corresponding test (value1 != value2) returned org.opalj.Unknown. I.e., this method is only allowed to be called if there is something to establish! I.e., the domain values are real ranges (not single values, e.g., [1,1]) that overlap.

  29. def intEstablishIsLessThan(pc: PC, left: (IntegerRangeValues.this)#DomainValue, right: (IntegerRangeValues.this)#DomainValue, operands: (IntegerRangeValues.this)#Operands, locals: (IntegerRangeValues.this)#Locals): ((IntegerRangeValues.this)#Operands, (IntegerRangeValues.this)#Locals)

    Definition Classes
    IntegerRangeValuesIntegerValuesDomain
    Note

    This function is ONLY defined if a corresponding test (value1 < value2) returned org.opalj.Unknown. I.e., this method is only allowed to be called if there is something to establish! I.e., the domain values are real ranges (not single values, e.g., [1,1]) that overlap.

  30. def intEstablishIsLessThanOrEqualTo(pc: PC, left: (IntegerRangeValues.this)#DomainValue, right: (IntegerRangeValues.this)#DomainValue, operands: (IntegerRangeValues.this)#Operands, locals: (IntegerRangeValues.this)#Locals): ((IntegerRangeValues.this)#Operands, (IntegerRangeValues.this)#Locals)

    Definition Classes
    IntegerRangeValuesIntegerValuesDomain
    Note

    This function is ONLY defined if a corresponding test (value1 <= value2) returned org.opalj.Unknown. I.e., this method is only allowed to be called if there is something to establish! I.e., the domain values are real ranges (not single values, e.g., [1,1]) that overlap.

  31. def intEstablishValue(pc: PC, theValue: Int, value: (IntegerRangeValues.this)#DomainValue, operands: (IntegerRangeValues.this)#Operands, locals: (IntegerRangeValues.this)#Locals): ((IntegerRangeValues.this)#Operands, (IntegerRangeValues.this)#Locals)

    Sets the given domain value to theValue.

    Sets the given domain value to theValue.

    This function is called by OPAL before it starts to explore the branch where this condition has to hold. (This function is, e.g., called whenever we explore the branches of a switch-case statement.) I.e., the constraint is established before a potential join operation.

    value

    An integer domain value that does also, but not exclusively represents theValue.

    Definition Classes
    IntegerRangeValuesIntegerValuesDomain
  32. def intIs0(pc: PC, value: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the given integer value is 0 or maybe 0.

    Tests if the given integer value is 0 or maybe 0.

    value

    A value with computational type integer.

    Definition Classes
    IntegerValuesDomain
  33. def intIsGreaterThan(pc: PC, largerValue: (IntegerRangeValues.this)#DomainValue, smallerValue: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the first integer value is larger than the second value.

    Tests if the first integer value is larger than the second value.

    largerValue

    A value with computational type integer.

    smallerValue

    A value with computational type integer.

    Definition Classes
    IntegerValuesDomain
  34. def intIsGreaterThan0(pc: PC, value: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the given integer value is > 0 or maybe > 0.

    Tests if the given integer value is > 0 or maybe > 0.

    value

    A value with computational type integer.

    Definition Classes
    IntegerValuesDomain
  35. def intIsGreaterThanOrEqualTo(pc: PC, largerOrEqualValue: (IntegerRangeValues.this)#DomainValue, smallerOrEqualValue: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the first integer value is larger than or equal to the second value.

    Tests if the first integer value is larger than or equal to the second value.

    largerOrEqualValue

    A value with computational type integer.

    smallerOrEqualValue

    A value with computational type integer.

    Definition Classes
    IntegerValuesDomain
  36. def intIsGreaterThanOrEqualTo0(pc: PC, value: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the given value is greater than or equal to 0 or maybe greater than or equal to 0.

    Tests if the given value is greater than or equal to 0 or maybe greater than or equal to 0.

    value

    A value with computational type integer.

    Definition Classes
    IntegerValuesDomain
  37. def intIsLessThan(pc: PC, left: (IntegerRangeValues.this)#DomainValue, right: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the first integer value is smaller than the second value.

    Tests if the first integer value is smaller than the second value.

    Definition Classes
    IntegerRangeValuesIntegerValuesDomain
  38. def intIsLessThan0(pc: PC, value: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the given integer value is < 0 or maybe < 0.

    Tests if the given integer value is < 0 or maybe < 0.

    value

    A value with computational type integer.

    Definition Classes
    IntegerValuesDomain
  39. def intIsLessThanOrEqualTo(pc: PC, left: (IntegerRangeValues.this)#DomainValue, right: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the first integer value is less than or equal to the second value.

    Tests if the first integer value is less than or equal to the second value.

    Definition Classes
    IntegerRangeValuesIntegerValuesDomain
  40. def intIsLessThanOrEqualTo0(pc: PC, value: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the given integer value is less than or equal to 0 or maybe less than or equal to 0.

    Tests if the given integer value is less than or equal to 0 or maybe less than or equal to 0.

    value

    A value with computational type integer.

    Definition Classes
    IntegerValuesDomain
  41. def intIsNot0(pc: PC, value: (IntegerRangeValues.this)#DomainValue): Answer

    Tests if the given integer value is not 0 or maybe not 0.

    Tests if the given integer value is not 0 or maybe not 0.

    value

    A value with computational type integer.

    Definition Classes
    IntegerValuesDomain
  42. def intIsSomeValueInRange(pc: PC, value: (IntegerRangeValues.this)#DomainValue, lowerBound: Int, upperBound: Int): Answer

    Returns Yes iff at least one possible extension of the given value is in the specified range; that is, if the intersection of the range of values captured by the given value and the specified range is non-empty.

    Returns Yes iff at least one possible extension of the given value is in the specified range; that is, if the intersection of the range of values captured by the given value and the specified range is non-empty.

    For example, if the given value captures all positive integer values and the specified range is [-1,1] then the answer has to be Yes. If we know nothing about the potential extension of the given value the answer will be Unknown. The answer is No iff both ranges are non-overlapping.

    value

    A value that has to be of computational type integer.

    lowerBound

    The range's lower bound (inclusive).

    upperBound

    The range's upper bound (inclusive).

    Definition Classes
    IntegerRangeValuesIntegerValuesDomain
  43. def intIsSomeValueNotInRange(pc: PC, value: (IntegerRangeValues.this)#DomainValue, lowerBound: Int, upperBound: Int): Answer

    Returns Yes iff at least one (possible) extension of a given value is not in the specified range; that is, if the set difference of the range of values captured by the given value and the specified range is non-empty.

    Returns Yes iff at least one (possible) extension of a given value is not in the specified range; that is, if the set difference of the range of values captured by the given value and the specified range is non-empty. For example, if the given value has the integer value 10 and the specified range is [0,Integer.MAX_VALUE] then the answer has to be No. But, if the given value represents the range [-5,Integer.MAX_VALUE] and the specified range is again [0,Integer.MAX_VALUE] then the answer has to be Yes.

    The answer is Yes iff the analysis determined that at runtime value will have a value that is not in the specified range. If the analysis(domain) is not able to determine whether the value is or is not in the given range then the answer has to be Unknown.

    value

    A value that has to be of computational type integer.

    lowerBound

    The range's lower bound (inclusive).

    upperBound

    The range's upper bound (inclusive).

    Definition Classes
    IntegerRangeValuesIntegerValuesDomain
  44. final def intValue[T](value: (IntegerRangeValues.this)#DomainValue)(f: (Int) ⇒ T)(orElse: ⇒ T): T

    If the given value encapsulates a precise integer value then the function ifThen is called with the respective value otherwise orElse is called.

    If the given value encapsulates a precise integer value then the function ifThen is called with the respective value otherwise orElse is called.

    Definition Classes
    IntegerRangeValuesConcreteIntegerValues
    Annotations
    @inline()
  45. final def intValueOption(value: (IntegerRangeValues.this)#DomainValue): Option[Int]

    Returns the current Int value represented by the domain value if it exists.

    Returns the current Int value represented by the domain value if it exists.

    Definition Classes
    IntegerRangeValuesConcreteIntegerValues
    Annotations
    @inline()
    Note

    This method returns None if the DomainValue does not represent an Integer value or the precise value is not known. I.e., this method never fails.

  46. final def intValues[T](value1: (IntegerRangeValues.this)#DomainValue, value2: (IntegerRangeValues.this)#DomainValue)(f: (Int, Int) ⇒ T)(orElse: ⇒ T): T
    Attributes
    protected
    Annotations
    @inline()
  47. def ior(pc: PC, value1: (IntegerRangeValues.this)#DomainValue, value2: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  48. def irem(pc: PC, left: (IntegerRangeValues.this)#DomainValue, right: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#IntegerValueOrArithmeticException
  49. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  50. def ishl(pc: PC, value: (IntegerRangeValues.this)#DomainValue, shift: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  51. def ishr(pc: PC, value: (IntegerRangeValues.this)#DomainValue, shift: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  52. def isub(pc: PC, left: (IntegerRangeValues.this)#DomainValue, right: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  53. def iushr(pc: PC, value: (IntegerRangeValues.this)#DomainValue, shift: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  54. def ixor(pc: PC, value1: (IntegerRangeValues.this)#DomainValue, value2: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue
  55. def maxCardinalityOfIntegerRanges: Long

    Determines the maximum number of values captured by an integer value range.

    Determines the maximum number of values captured by an integer value range.

    This setting is only used when true ranges are merged; in case of a join of two concrete values we will always create an IntegerRange value. If the cardinality is exceeded, we will also first create ranges based on the boundaries determined by the defaul data types (byte,short,char).

    This setting can be adapted at runtime.

  56. def mergeDomainValues(pc: PC, v1: (IntegerRangeValues.this)#DomainValue, v2: (IntegerRangeValues.this)#DomainValue): (IntegerRangeValues.this)#DomainValue

    Merges the given domain value v1 with the domain value v2 and returns the merged value which is v1 if v1 is an abstraction of v2, v2 if v2 is an abstraction of v1 or some other value if a new value is computed that abstracts over both values.

    Merges the given domain value v1 with the domain value v2 and returns the merged value which is v1 if v1 is an abstraction of v2, v2 if v2 is an abstraction of v1 or some other value if a new value is computed that abstracts over both values.

    This operation is commutative.

    Definition Classes
    ValuesDomain
  57. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  58. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  59. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  60. def properties(pc: PC, propertyToString: (AnyRef) ⇒ String = (v) ⇒ v.toString): Option[String]

    Returns a string representation of the properties associated with the instruction with the respective program counter.

    Returns a string representation of the properties associated with the instruction with the respective program counter.

    Associating properties with an instruction and maintaining those properties is, however, at the sole responsibility of the Domain.

    This method is predefined to facilitate the development of support tools and is not used by the abstract interpretation framework.

    Domains that define (additional) properties should (abstract) override this method and should return a textual representation of the property.

    Definition Classes
    ValuesDomain
  61. def summarize(pc: PC, values: Iterable[(IntegerRangeValues.this)#DomainValue]): (IntegerRangeValues.this)#DomainValue

    Creates a summary of the given domain values by summarizing and joining the given values.

    Creates a summary of the given domain values by summarizing and joining the given values. For the precise details regarding the calculation of a summary see Value.summarize(...).

    pc

    The program counter that will be used for the summary value if a new value is returned that abstracts over/summarizes the given values.

    values

    An Iterable over one or more values.

    Definition Classes
    ValuesDomain
    Note

    The current algorithm is generic and should satisfy most needs, but it is not very efficient. However, it should be easy to tailor it for a specific domain/domain values, if need be.

  62. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  63. def toString(): String
    Definition Classes
    AnyRef → Any
  64. def typeOfValue(value: (IntegerRangeValues.this)#DomainValue): TypeInformation

    Returns the type(type bounds) of the given value.

    Returns the type(type bounds) of the given value.

    In general a single value can have multiple type bounds which depend on the control flow. However, all types that the value represents must belong to the same computational type category. I.e., it is possible that the value either has the type "NullPointerException or IllegalArgumentException", but it will never have – at the same time – the (Java) types int and long. Furthermore, it is possible that the returned type(s) is(are) only an upper bound of the real type unless the type is a primitive type.

    This default implementation always returns org.opalj.ai.UnknownType.

    Implementing typeOfValue

    This method is typically not implemented by a single Domain trait/object, but is instead implemented collaboratively by all domains that implement the semantics of certain values. To achieve that, other Domain traits that implement a concrete domain's semantics have to abstract override this method and only return the value's type if the domain knows anything about the type. If a method that overrides this method has no knowledge about the given value, it should delegate this call to its super method.

    Example

    trait FloatValues extends Domain[...] {
      ...
        abstract override def typeOfValue(value: DomainValue): TypesAnswer =
        value match {
          case r: FloatValue ⇒ IsFloatValue
          case _             ⇒ super.typeOfValue(value)
        }
    }
    Definition Classes
    ValuesDomain
  65. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  66. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  67. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  68. object IntegerRange

    Extractor for IntegerRange values.

Inherited from ConcreteIntegerValues

Inherited from IntegerRangeValuesFactory

Inherited from IntegerValuesDomain

Inherited from IntegerValuesFactory

Inherited from ValuesDomain

Inherited from AnyRef

Inherited from Any

Ungrouped