
Hermes: Assessment and Creation of Effective Test Corpora

Michael Reif Michael Eichberg Ben Hermann Mira Mezini
Technische Universität Darmstadt, Germany

{lastname}@cs.tu-darmstadt.de

Abstract
An integral part of developing a new analysis is to validate the
correctness of its implementation and to demonstrate its use-
fulness when applied to real-world code. As a foundation for
addressing both challenges developers typically use custom
or well-established collections of Java projects. The hope is
that the collected projects are representative for the analysis’
target domain and therefore ensure a sound evaluation. But,
without proper means to understand how and to which degree
the features relevant to an analysis are found in the projects,
the evaluation necessarily remains inconclusive. Additionally,
it is likely that the collection contains many projects which
are – w.r.t. the developed analysis – basically identical and
therefore do not help the overall evaluation/testing of the
analysis, but still cost evaluation time.

To overcome these limitations we propose Hermes, a
framework that enables the systematic assessment of given
corpora and the creation of new corpora of Java projects. To
show the usefulness of Hermes, we used it to comprehend
the nature of the projects belonging to the Qualitas Corpus
(QC) and then used it to compute a minimal subset of all QC
projects useful for generic data- and control-flow analyses.
This subset enables effective and efficient integration test
suites.

CCS Concepts •Software and its engineering → Gen-
eral programming languages; •Theory of computation
→ Program analysis

Keywords Benchmark Suites, Test Corpora, Program Anal-
ysis, Java

1. Introduction
Whenever a new static or dynamic analysis is developed, it
is necessary to test its implementation and to evaluate its
usefulness. For both tasks, researchers typically use large(r)

collections of projects. When a well-established corpus of
projects is used [4, 11, 16] the respective results are often
easier to compare with the state-of-the-art. But, given the
breadth of proposed code analyses, e.g., data-flow analyses [3,
10], concurrency analyses [2], call-graph algorithms [1, 14],
or whole static analysis frameworks [7, 18], it becomes
evident that most authors either have to customize existing
corpora or have to create their own collection which targets
their specific needs and goals.

Another major drawback of using an established suite is
that it may have been build for another purpose and/or is out-
dated; e.g., Terra et al. [17] published their own version of the
Qualitas Courpus [16] where they replaced outdated projects
by newer versions. Other frequently used benchmarks suites
like SecuriBench [11] or DaCapo [4] also did not receive
updates for quite a while. This reduces their attractiveness
since recent features may not be covered at all and outdated
features may be over represented. The latter may skew eval-
uation results. For instance, when the new invokedynamic

bytecode instruction was introduced in Java 7, it became nec-
essary to explicitly support it and this only happened with
Java 8 and, e.g., Scala 2.12. The latter was released 6 years
after the release of Java 7.

When researchers create their own test corpora they often
do so using a combination of synthetic test projects and open-
source projects. Most often the authors take programs from
different domains, developed by different people. The hope
is that those programs vary in terms of language features,
programming styles, and size and are therefore represen-
tative. At a closer look, it is unclear to which degree the
constructed corpus of projects supports the evaluation goal
and to which degree all relevant properties, like occurrences
of programming language features, the usage of certain APIs,
and problematic design patterns, can be found in the projects.
This lack of knowledge of the properties of the used projects
generally leads to questionable evaluation results.

To facilitate comprehension of existing test corpora and
to ease the construction of new evaluation or integration test
corpora, we propose Hermes. Hermes provides a generic
framework for the assessment and construction of evaluation
corpora. Based on an extensible set of queries, Hermes pro-
vides a comprehensive overview of features of Java bytecode
projects whose understanding is critical for many analysis



projects. Based on the results of evaluating the queries, Her-
mes can then compute the minimal set of those projects that
are necessary to cover all relevant features. Using this set it
is possible to efficiently test and evaluate analyses.

This paper represents our initial work, with the following
specific contributions:

• Hermes, a framework for the assessment of a given corpus
of Java projects and for the computation of a minimal
corpus regarding the evaluated features.
• An initial set of feature queries to collect, provide, and

comprehend information about a project.
• A first evaluation that shows the usefulness of the ap-

proach for both: the assessment and creation of test cor-
pora.

To download Hermes go to: www.opal-project.de

Next, we will discuss the construction and the state of
currently available benchmark suites and test corpora. After
that, we will discuss the proposed approach and its realization.
An evaluation and case study is presented thereafter. The
paper ends with a conclusion and future work.

2. State-of-the-art
Comparing approaches, such as static or dynamic analyses
which belong to the same research area can be performed with
standardized test or evaluation corpora that suit the respective
target domain. Therefore, most research papers try to rely
on established copora. However, the creation of an unbiased,
representative, and long-lived corpus is difficult. The lack
of such corpora in various research areas has led authors to
build their own corpora, which differ in particular in two
dimensions: 1) criteria for project selection and 2) evaluation
goals.

Blackburn et al. [4] created the DaCapo benchmark suite
which primarily targets Java performance evaluation. They
also discussed how to develop and test such corpora. They
determined that their benchmark should consist of diverse
and easy to use real-world applications. Beside these criteria,
they identified a set of dynamic and static software metrics,
to assess a project’s performance behavior.

Tempero et al. [16] first identified size, content, representa-
tiveness, and permanence as key aspects for project selection.
Based on these criteria, they created a curated code collection
of 100 Java projects. These projects range from libraries over
application frameworks to different kinds of applications. The
focus of the Qualitas Corpus is on aiding researchers to carry
out empirical studies of code.

In SecuriBench, Livshits et al. [11] selected large web
applications, which have known security vulnerabilities.
Consequently, SecuriBench can be used to evaluate static
and dynamic security analyses. Other corpora like Droid-
Bench [3], PointerBench [15], or the Darmstadt Library

Corpus (DLC) [14] provide data sets with yet different goals
as well as different criteria to assemble the corpus.

Hence, all of the previously introduced corpora were
designed with one specific goal in mind, but their suitability
w.r.t. their original goals often remains unknown. Especially
the inclusion of (yet) another real-world project into a corpus
is repeatedly justified based on its perceived difference, rather
than based on qualitative measures. Additional measures like
goal-relevant metrics, e.g., the degree to which a project
uses Java reflection, or the occurrence of certain properties
– already used by some corpora – could be used to assess
the suitability regarding a given goal. Furthermore, most of
the previously presented corpora are no longer maintained,
which may indicate the difficulty in keeping them up-to-date.
To address the latter short-coming, efforts have been made to
(semi-)automate the process of corpora creation.

Dujmović et al. [6] presented a parameterized approach to
automatically generate fully synthetic programs that already
allow benchmarking and testing, but cannot be used to
evaluate an approach on real-world applications.

Do et al. [5] present Automatic Benchmark Management
(ABM), a methodology for mining software repositories
to semi-automatically extract an up-to-date, updatable, and
representative corpus that includes applications from various
domains. However, no assessment is done including the
projects and it may be the case that many projects do not
have relevant differences.

These corpora are good starting points to build up-to-date,
comprehensive evaluation- or test corpora and, once a large
set of projects is available, Hermes can be used to assess
those projects regarding relevant features. After executing
all queries over all projects, Hermes can be used in a second
step, to compute a minimal sub corpus that ensures complete
feature coverage.

3. Hermes
Hermes is an extensible, configurable framework for the com-
prehensive assessment of a given set of projects w.r.t. a wide
range of different features. The projects have to consists of
Java bytecode and can be either standalone programs or Java
libraries; the set of all projects forms the base corpus. The ex-
tension of a feature for a given project is then determined by
a respective query. An example feature of a project could be
the use of a specific Java API (e.g., Java Reflection API, Un-
safe or JDBC), the occurrence of methods with non-reducible
control-flow graphs (primarily in explicitly obfuscated code)
or the usage of lambda expressions. In the latter case, the
query would collect all respective instructions in the project’s
code.

Using the results of the evaluation of all queries, Hermes
can then automatically compute the optimal corpus which
ensures that all features are found in at least one project. This
subset can then be used for effective and efficient testing and
evaluation purposes.

www.opal-project.de


1 {”org”: { ”opalj”: { ”hermes”: { ”projects”: [
2 {
3 ”id”: ”Apache ANT 1.7.1 − Javac 6”,
4 ”cp”: ”../../projects/Apache ANT 1.7.1.jar”,
5 ”libcp”: ”../../dependenciess/Apache ANT 1.7.1.jar”,
6 ”libcp default”: ”JRE”
7 },
8 {
9 ”id”: ”argouml−excerpt”,

10 ”cp”: ”../../projects/argouml−excerpt.jar”
11 }]}}}}
Listing 1. Example configuration file (.json) that specifies
the corpus projects.

3.1 Approach
Hermes is based upon the Java bytecode analysis framework
OPAL [7]. OPAL is written in Scala and provides multiple
representations of Java bytecode which enables lowest level
queries but also queries at a high abstraction level. Addition-
ally, OPAL provides useful abstractions such as a Project
and also provides a wide range of standard functionalities
like computing control-flow graphs and call graphs. This fa-
cilitates the implementation of feature queries which range
from metrics to data- and control-flow dependent metrics.
The computation of the optimal corpus is done using the
constraint programming library Choco [13].

In the following, we describe the main components of
Hermes along with the steps a user has to take to assess and
optimize a base corpus.

Corpus configuration. Before running Hermes, all projects
of the base corpus have to be specified. Listing 1 shows an
example configuration for a small corpus consisting of two
projects. Each project specification consists of a unique id
(line 3 and 9) and a specification of its classpath (cp line 4 and
10). Additionally, the two optional attributes libcp (line 5)
and libcp default (line 6) can be used to specify the project’s
libraries. The first one specifies the paths to the libraries’ jars
and libcp default is used to add a dependency to a predefined
library to the project. The available default libraries are the
current Java Runtime Environment (JRE) as a whole or just
the rt.jar1. Library class paths need to be specified when-
ever some feature query requires information that cannot be
extracted from the project alone, e.g., feature queries related
to the inheritance hierarchy generally require a complete type
hierarchy.

Feature queries. Hermes also requires that the queries,
which should be evaluated, are configured. By default, all
available queries will be evaluated, but this can be changed
and new queries can also be specified. The set of queries,
should – in general – be selected with a concrete analysis and

1 Here, current refers to the one used when running Hermes.

1 org.opalj.hermes.queries = [
2 { query = queries.Metrics, activate = true }
3 { query = queries.MethodsWithoutReturns, activate = true}
4 { query = queries.JDBCAPIUsage, activate = false }
5 { query = queries.MethodTypes, activate = true } ]

Listing 2. Hermes’ configuration of enabled and disabled
feature queries.

test/evaluation goal in mind. For example, if a test corpus
for integration testing of a static analysis should be created,
it might be important to ensure that all language-specific
features are found at least once in the given projects. If the
evaluation goal is the scalability of the analysis, it may be
more important to ensure that specific features occur with
a certain frequency. Listing 2 shows a configuration that
enables the queries in Line 2, 4, and 5 and which disables the
query in Line 3. Each entry specifies the fully qualified name
of the class that implements the query (query) and whether
the given query should be executed or not (activate). New
queries can simply be added to the configuration analogously.

Corpus evaluation and visualization. Given a complete
configuration, we can then start Hermes. Hermes’ UI provides
an overview of the current state of the evaluation, provides
descriptions of the activated queries, and shows basic size
metrics related to the projects.

Additionally, the evaluation of each activated feature query
for each project belonging to the specified base corpus is
directly started. As soon as a feature query was evaluated,
Hermes shows the resulting number of feature occurrences
and makes it possible to jump to concrete occurrences of the
feature in the respective project’s code base – if supported by
the query. In general a query can report feature occurrences
at the class, method, or instruction level. Being able to
navigate to concrete feature occurrences is helpful when
developing new feature queries, but also if a more detailed
understanding of the feature in the context of a specific
project is required. The amount of location information that
is kept is configurable and managed by Hermes to ensure
that very large test corpora such as the Qualitas Corpus can
successfully be evaluated.

3.2 Feature Queries
A feature query is a static analysis that is given a project
as input and then collects all feature extensions of one or
multiple closely related features. For example, it is possible
to write a query which collects all Java 7 class files found
in a specific project and another one for Java 8 class files.
Alternatively – and also more efficiently – it is possible to
write a single feature query that analyzes every class file once
and adds every class file to its respective feature category.
To ensure that all features are uniquely identifiable across



Table 1. Available feature queries including their category, number of unique features and a short description.
feature query category # features description
BasicMetrics metrics,

control
flow

15 Extracts the following basic metrics: methods per class, fields per
class, the number of children (NOC), and McCabe and groups them
per complexity category (e.g., in case of McCabe: linear methods,
simple methods (2 to 3 paths), complex methods (more than 3
paths).

BytecodeInstructions JVM
features

201 List of all Java bytecode instructions as defined in the Java Virtual
Machine Specification (Java 1.1 up to Java 8).

ClassFileVersion JVM
features

6 Extracts the class file version (Java 1.1 up to Java 9) of each class
file belonging to the project where each version is a single feature.

ClassLoaderAPIUsage API usage,
inheritance

5 Extracts the usage of methods of java.lang.ClassLoader in a
project and also checks whether custom class loaders exist.

ClassTypes language
features

10 Extracts the information about the type of the specified class; e.g.,
how may concrete classes, annotations, interfaces, interfaces with
default methods, or Java 9 modules are defined.

JavaCryptoArchitecture-
Usage

API usage 8 Extracts information about the usage of core classes and interfaces,
for instance ciphers, keys, or signatures, from the Java Crypto
Architecture (JCA) according to the official reference guide.

JDBCAPIUsage API usage 5 Extracts information about the usage of Java’s JDBC API and SQL
statement kinds.

MethodsWithoutReturns control flow 2 Extracts whether a method either never returned normally, e.g.,
by throwing an exception, or has a real infinite loop without any
possibility to return.

MethodTypes language
features

9 Extracts the information about the type of the specified methods;
e.g., whether a method is native, synchronized, or is a varargs
method.

ReflectionAPIUsage API usage 12 Derives which methods/functionality of Java’s classical Reflection
API is used within a project

SystemAPIUsage API usage,
capabilities

8 Extracts the usage of API methods that are related to the state
of the JVM, capabilities [9], or used to access the underlying
operating system; e.g., spawning an external process, playing sound,
or working with the java.lang.SecurityManager.

TrivialReflectionUsage API usage,
data flow

1 Counts the number of cases where Class.forName calls can be
trivially resolved, because the respective String(s) are directly
available.

UnsafeAPIUsage API usage 19 Derives usage information about sun.misc.Unsafe according to
the classification of Mastrangelo et al. [12].

1 trait FeatureQuery {
2

3 def featureIDs: Seq[String]
4

5 def apply[S](
6 projectConfiguration: ProjectConfiguration, String]
7 project: Project[S], String]
8 rawClassFiles: Traversable[(da.ClassFile, S)] String]
9 ) : TraversableOnce[Feature[S]]

10 }
Listing 3. Scala trait that has to be implemented by all
feature queries.

all feature queries, each query assigns a unique id to each
derived feature.

All feature queries have to implement the FeatureQuery
interface, which defines the two functions shown in Listing
3. The first function featureIDs (Line 3) defines a list of
unique feature ids where each id represents the name of a
derived feature. The second function (apply - Line 5) defines
the query itself. The input for the static analysis is the project
configuration (Line 6), OPAL’s representation of a Project
(Line 7), and a raw one-to-one representation of the project’s
Java class files (Line 8). The raw representation supports
queries which need to work on unprocessed class files; e.g.,
those that want to analyze the constant pool in detail. The
representation provided by the project enables higher level



code analyses, such as control- and data-flow analyses or
abstract code interpretation.

The currently available feature queries are listed in Table 1
together with the number of derived features and a short
description of each feature group. The available queries
demonstrate the variety of possible analyses: they reach from
basic API usage queries, which can be used to select projects
for API misuse detection, specification mining, or injection
analyses, over JVM and language features based queries –
e.g., to find suitable integration test corpora – up to control-
and data-flow analyses. The latter can, e.g., be used to get
some understanding how Java reflection is used.

3.3 Computing an Optimal Corpus
After all queries have been evaluated for all projects it is pos-
sible to let Hermes compute the subset of all projects which
has the overall minimal number of methods (optimization
goal) and which ensures that every feature occurs at least
once in some project (constraint). I.e., Hermes would pre-
fer two small projects with, e.g., 2 methods each over one
project with 10 methods. Minimization of the overall number
of methods is done because in most cases it better reflects the
overall effort that is necessary when the corpus is eventually
used for evaluation or test purposes.

For more elaborated used cases, it is possible to export
the computed results using a CSV file and to perform some
external post processing.

4. Evaluation
In the following, we describe the evaluation of Hermes
for the two use cases: “Comprehending a test corpus” and
“Generation of an effective integration test suite”.

All measurements were done on a Mac Pro with a Xeon
E5 CPU with 8 cores@3GHz. The Java Virtual Machine (Java
8 Update 121) was given 24GB of memory.

4.1 Comprehending Test Corpora
To understand the nature of the projects contained in the latest
release of the Qualitas Corpus [16] (QC) from September
2013, we run Hermes using all queries against all projects
and inspected the result. As expected – given the release date
of QC – none of the projects used any Java 8 features. More
surprisingly, none of the projects used the JavaFX framework
already introduced in 2008. This indicates that even though
the corpus already contains over 100 projects some domains
are not well represented. Furthermore, only one (Hibernate)
of the 100 included projects uses Java 72 features. Overall,
this preliminary analysis suggests that using the Qualitas
Corpus to evaluate or test analyses that support Java features
released after 2011 is not meaningful/possible.

2 Java 7 was released in 2011 and already two years old when the updated
corpus was created.

4.2 Generating Integration Test Suites
For the second evaluation, we used Hermes to compute an
optimal test corpus based on the Qualitas Corpus [16] (QC)
for generic integration testing purposes; i.e., we used Hermes
to compute the subset of all QC projects that should enable
us to perform effective and efficient integration testing of
general static and dynamic analyses. The concrete goal for the
evaluation was to use the minimal set of projects for testing
the analysis described in the paper “Hidden Truths in Dead
Software Paths” [8]. The core part of that analysis is a very
generic data- and control-flow analysis and it should be able
to handle all valid Java bytecode. Using this minimal set of
projects should give us basically the same level of confidence
in our developed analysis as using all QC projects.

The first step of this evaluation was to run Hermes against
all projects using all queries. After all queries were evaluated
for all projects, we let Hermes compute the minimal set of
projects which (a) has the minimal overall number of methods
and (b) ensures that every feature at least occurs once in some
project3. The set of projects computed by Hermes consists
of the following five projects: joggplayer, jchempaint,
hibernate, quilt, and nakedobjects.

The second step was to determine the overall coverage of
the code of the paper’s core control- and data-flow analysis.
We measured the coverage twice: Once, running the analysis
against all 100 projects of the Qualitas Corpus and once
running it only against the automatically determined set of
5 projects. The time to run the analysis against all projects
was 1006s(≈ 16.77min) while it took 169s(≈ 2.82min)
for the selected projects. I.e., just using the selected projects
is nearly 6 times faster. However, the code coverage is just
1.06% better in the latter case when we use all QC projects
instead of the five selected ones. A closer analysis of the
coverage data revealed that the difference is due to advanced
exception handling and more elaborated array-based accesses
found in projects which did not belong to the test corpus of
five projects.

4.3 Discussion
Overall, we can conclude that it is already possible to use
Hermes to get a better understanding of available test corpora
and also to compute test corpora that enable effective testing.
Furthermore, given the very primitive nature of the available
queries and the achieved quality of the results, it is evident
that we don’t need complex queries to compute effective test
corpora.

Additionally, by adding further queries related to excep-
tions/exception handling and to array accesses, it will be pos-
sible to compute a test corpus that is most likely still much
smaller than the complete QC, but which will be as effective
when testing general data- and control-flow analyses.

3 Recall that features which are not found at all across all given projects,
such as those related to Java 8 features in case of the QC, are simply ignored.



5. Future Work & Conclusion
Testing and evaluation are essential and generally very time
consuming tasks that are part of the development of every
new analysis. Both tasks are typically done using test corpora
consisting of large(r) collections of projects. But as discussed,
without explicit tool support it is impossible to know if the
selected projects are actually having the desired/necessary
features and it is also impossible to know which projects
are actually useful or which just test/evaluate the same
functionality over and over again.

To address these issues, we have proposed Hermes– a
generic framework that facilitates the assessment of a given
set of Java bytecode projects. Hermes contains several built-in
feature queries which allow users to explore various proper-
ties of projects and which are a starting point for selecting
projects for different static analyses; e.g., for SQL injections,
cryptographic security flaws, or call graph construction. We
demonstrated Hermes’ usefulness by using it to better un-
derstand the Qualitas Corpus and by computing a minimal
test corpus useful for integration testing of generic data- and
control-flow analyses.

To broaden the scope of Hermes, we will implement
further queries in future work and make the computation
of the optimal corpus extensible and configurable.

Acknowledgments
This work was supported by the DFG as part of CRC 1119
CROSSING, by the German Federal Ministry of Education
and Research (BMBF) as well as by the Hessen State Ministry
for Higher Education, Research and the Arts (HMWK) within
CRISP.

References
[1] K. Ali and O. Lhoták. Application-only call graph construction.

In European Conference on Object-Oriented Programming,
pages 688–712. Springer, 2012.

[2] C. Artho and A. Biere. Applying static analysis to large-
scale, multi-threaded java programs. In Software Engineering
Conference, 2001. Proceedings. 2001 Australian, pages 68–75.
IEEE, 2001.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, P. McDaniel, S. Arzt, S. Rasthofer,
C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. FlowDroid. ACM SIGPLAN Notices, 49(6):
259–269, jun 2014. ISSN 03621340.

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, et al. The dacapo benchmarks: Java benchmarking
development and analysis. In ACM Sigplan Notices, volume 41,
pages 169–190. ACM, 2006.

[5] L. N. Q. Do, M. Eichberg, and E. Bodden. Toward an
automated benchmark management system. In Proceedings
of the 5th ACM SIGPLAN International Workshop on State Of
the Art in Program Analysis, pages 13–17. ACM, 2016.

[6] J. Dujmović. Automatic generation of benchmark and test
workloads. In Proceedings of the first joint WOSP/SIPEW
international conference on Performance engineering, pages
263–274. ACM, 2010.

[7] M. Eichberg and B. Hermann. A software product line for
static analyses: the OPAL framework. In Proceedings of the
3rd ACM SIGPLAN International Workshop on the State of the
Art in Java Program Analysis, pages 1–6. ACM, 2014.

[8] M. Eichberg, B. Hermann, M. Mezini, and L. Glanz. Hidden
truths in dead software paths. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 474–484, New York, NY, USA, 2015.
ACM.

[9] B. Hermann, M. Reif, M. Eichberg, and M. Mezini. Getting to
know you: Towards a capability model for java. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 758–769, New York, NY,
USA, 2015. ACM.

[10] J. Lerch, J. Spath, E. Bodden, and M. Mezini. Access-Path
Abstraction: Scaling Field-Sensitive Data-Flow Analysis with
Unbounded Access Paths (T). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering
(ASE), pages 619–629. IEEE, nov 2015. ISBN 978-1-5090-
0025-8.

[11] B. Livshits. Defining a set of common benchmarks for web
application security. 2005.

[12] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza,
M. Hauswirth, and N. Nystrom. Use at your own risk: the
Java unsafe API in the wild. ACM SIGPLAN Notices, 50(10):
695–710, 2015. ISSN 03621340.

[13] C. Prud’homme, J.-G. Fages, and X. Lorca. Choco Docu-
mentation. TASC, INRIA Rennes, LINA CNRS UMR 6241,
COSLING S.A.S., 2016. URL http://www.choco-solver.

org.

[14] M. Reif, M. Eichberg, B. Hermann, J. Lerch, and M. Mezini.
Call graph construction for java libraries. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 474–486. ACM,
2016.

[15] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden.
Boomerang: Demand-Driven Flow- and Context-Sensitive
Pointer Analysis for Java. DROPS-IDN/6116, 56, 2016. ISSN
1868-8969.

[16] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble. The qualitas corpus: A curated
collection of java code for empirical studies. In Software
Engineering Conference (APSEC), 2010 17th Asia Pacific,
pages 336–345. IEEE, 2010.

[17] R. Terra, L. F. Miranda, M. T. Valente, and R. S. Bigonha.
Qualitas. class corpus: A compiled version of the qualitas
corpus. ACM SIGSOFT Software Engineering Notes, 38(5):
1–4, 2013.

[18] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot: A java bytecode optimization framework.
In CASCON First Decade High Impact Papers, pages 214–224.
IBM Corp., 2010.

http://www.choco-solver.org
http://www.choco-solver.org

	Introduction
	State-of-the-art
	Hermes
	Approach
	Feature Queries
	Computing an Optimal Corpus

	Evaluation
	Comprehending Test Corpora
	Generating Integration Test Suites
	Discussion

	Future Work & Conclusion

