
Lattice Based Modularization of Static Analyses
Michael Eichberg, Florian Kübler, Dominik Helm, Michael Reif, Guido Salvaneschi and Mira Mezini

The Initial Challenge (aka Research Question)

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

What do we need to prove that instances of
java.lang.String are immutable.

public final class String extends Traversable<Byte> {
 private final byte[] buf;
 private int hash;
 public String(byte[] buf) { this.buf = Arrays.copyOf(buf, buf.length); }
 String(byte[] buf, boolean cloned) { assert (cloned); this.buf = buf; }
 …
 @Override public int hashCode() {
 if (this.hash == 0) {
 int hash = 0;
 for (byte v : buf) { hash += v; }
 this.hash = hash;
 }
 return this.hash;
} }

 3

We need to model the
effect of (selected)
native methods.

We need points-to/
escape information.We need to

understand lazy
initialization

patterns.

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

What do we need to prove that instances of
java.lang.String are immutable.

public final class String extends Traversable<Byte> {
 private final byte[] buf;
 private int hash;
 public String(byte[] buf) { this.buf = Arrays.copyOf(buf, buf.length); }
 String(byte[] buf, boolean cloned) { assert (cloned); this.buf = buf; }
 …
 @Override public int hashCode() {
 if (this.hash == 0) {
 int hash = 0;
 for (byte v : buf) { hash += v; }
 this.hash = hash;
 }
 return this.hash;
} }

 4

We need to model the
effect of (selected)
native methods.

We need points-to/
escape information.We need to

understand lazy
initialization

patterns.

Too much for one analysis.

Req. 1: the “overall” analysis has to be modularized

Req. 3: only compute required information (efficiently)

Req. 2: we have to facilitate incremental development 
(we can’t develop all analyses in one step; we need to be able to test parts of it!)

We need a framework for the efficient execution of independently
developed, but mutually dependent fix-point computations.

Based on the theoretical foundations of fix-point
computations on lattices, we developed a Scala based
framework to develop strictly modularized static analyses.
We use lattices as the inter-analyses interfaces.

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

Lattices related to
independent properties
(e.g. mutability, purity,
return value freshness,
thrown exceptions…)

class Purity {
 def analyze(
 e : Method
) : Result = {
 …
 }
}

derived/

computed

class FieldMutability {
 def analyze(
 e : Field
) : Result = {
 …
 }
}

derived/
computed

us
ed

used

Independent analyses
The lattices represent

the interface!

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

Analyses are basically just a simple Scala function.

def analyze(e: Entity): ComputationResult

type ComputationResult =
 (Entity, Property, Dependees, OnUpdateContinuation)

type Dependees = Traversable[(Entity, PropertyKind)]

type OnUpdateContinuation =
 (Entity, Property, State) => ComputationResult

 7

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

Example: Computing the purity for “getA”.

class X {
 private int a; // eventually (effectively) final
 public X(int a) { this.a = a; } /*<=eventually pure*/
 public int getA() { return this.a; } /*<=eventually pure*/
}

1. analyze(getA) =>  
p=Pure, dependees=(X.a|FieldMutability),c=<cont.>

2. (computation of the field mutability)
3. c(X.a,EffectivelyFinal,Final) => 

p=Pure, dependees={}, c=N/A
 8

Java Code

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

Handling cyclic computations.

 9

foo()bar()

iresult:pure

iresult:pure

2

3

result:pure

4

result:pure

5

def foo() {bar()}
def bar() {foo()}

start

Scenario 1

cycle resolution after step 3

def foo() {bar()}
def bar() {foo()}

Does it work?

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

(Implicit) dependencies between the 10 basic analyses + 4
supporting analyses developed to evaluate the framework.

 11

L(0)Field Locality

F(0)Return Value Freshness

Virtual Method
Return Value Freshness

E(0|1)Escape

Virtual Method
Escape

Com
plex Cyclic D

ependency

P(0|1|2)Purity

Virtual Method
Purity

P(1|2)

I(0)Class Immutability

Type Immutability
I(0)

I(0) P(0|1|2)
M(0|1)Field Mutability

P(2) F(0)

L(0)

E(1)
F(0)

P(2)

P(2)
F(0)

P(0|1|2)P(0|1|2)

L(0)

L(0)

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

M
os

t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

M
os

t
B
as

ic
 S

up
po

rt
in

g
A
na

ly
se

s
M

os
t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

N
o

Su
pp

or
tin

g
A
na

ly
se

s 

(U
sin

g
Fa

llb
ac

ks
 ~

B
ot

to
m

)
M

os
t
B
as

ic
 P

ur
ity

 A
na

ly
sis

The precision and recall effects of an analysis using
different support analyses can easily be evaluated.

 12

Modularization of Static Analyses ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands

Analysis con�guration P2/E1/F0/L0/M1/I0 P2/E0/F0/L0/M1/I0 P2 P0/M0/I0

Pure 52 628 (20.78%) 52 602 (20.77%) 49 849 (19.68%) 11645 (4.60%)
Side E�ect Free 32 951 (13.01%) 32 964 (13.01%) 35 654 (14.08%) – –
Contextually Pure/Side E�ect Free 11 614 (4.59%) 11 459 (4.52%) 11 173 (4.41%) – –
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%) 241456 (95.40%)
Relative execution time 100% 100% 75% 15%

Table 1. Purity results (absolute number and proportion of all methods) for di�erent analysis con�gurations

We have implemented four further analyses which ag-
gregate properties across subclasses / overriding methods.
For example, independent of the scheduled purity analysis
(< None >,P0,P1,P2), we always used the same aggregat-
ing analysis to compute Virtual Method Purity . In all cases
these aggregating analyses basically just implement meet
operations over the underlying lattices and are very fast.
Therefore, only a single implementation is required.

3.3 Executing Di�erent Analysis Schedules
We executed four di�erent con�gurations of our purity anal-
yses on the Oracle JDK 8 Update 151 to test if the modulariza-
tion is e�ective and enables the trivial exchange of analyses
and also the assessment of their contributions to the overall
analysis goal. Three con�gurations execute the P2 purity
analysis. The �rst one uses the best supporting analyses
available. The second one uses the weaker (intra-procedural)
E0 analysis instead of the inter-procedural E1 analysis. The
third one does not use supporting analysis at all; in that case
all respective queries just return their fallback values. The
�nal con�guration evaluates the P0 purity analysis with the
best supporting analyses it can use.
We scheduled all aggregating analyses to compute the

properties which abstract over sets of elements whenever
we scheduled a corresponding analysis. The results for deter-
mining the methods’ purity as well as the relative runtimes
when compared to each other are given in Table 1.

3.4 Evaluation Results and Discussion
Modularization of Analyses (RQ1) Based on the case
study, we can conclude that the approach supports an e�ec-
tive modularization of analyses, where each analysis com-
putes a single well-de�ned property kind. The analyses are
also lightweight in the sense that each one is implemented
such that it analyzes each entity in isolation.
Crucially, the analyses are also easily exchangeable and

reusable. Exchanging a more precise analysis for a faster
one is a simple con�guration matter. This result enables
�ne-tuning the trade-o� between an analysis’ precision and
performance to speci�c use cases.

Assessing the Contribution of Individual Supporting
Analyses (RQ2) In our study, exchanging the E1 escape
analysis for E0 results in negligible di�erences, suggesting
that a simple, intra-procedural escape analysis is su�cient
to support our purity analysis. However, the performance
overhead is basically none for the inter-procedural E1 escape

Program Batik Xalan

ReIm
Side E�ect Free methods 6 072 (37.88%) 3 942 (37.95%)
#Analyzed methods 16 029 10 386

OPAL
Pure methods 4 009 (25.20%) 2 492 (23.15%)
Side E�ect Free (incl. Pure) methods 6 780 (42.61%) 4 390 (40.79%)
Contextually Pure/SEF methods 987 (6.20%) 748 (6.95%)
#Analyzed methods 15 911 10 763

Table 2. Purity results for Batik/Xalan

analysis. Therefore, it is still possible to use it and to get
better results.

Not executing any supporting analyses leads to 2779 meth-
ods (⇡ 5.3% of those identi�ed by the best analysis con�g-
uration) being just Side E�ect Free instead of Pure. The
decreased execution time by about 25%, however, suggests
that relying on sound fallback values – instead of executing
the supporting analyses – may be preferable for use cases
that do not require precise identi�cation of deterministic
methods. Similar to exchanging the escape analyses, it is pos-
sible to evaluate the e�ect of individual supporting analyses
in order to �ne-tune the precision/performance trade-o� to
the speci�c use case.
The P0 purity analysis is signi�cantly less precise than

any previous con�guration. It identi�es less than 5% of all
methods as Pure compared to ⇡ 20%. This analysis also does
not identify Side E�ect Free or Contextually Pure methods.
With an 85% reduced execution time - compared to the most
precise con�guration - this may still be a viable con�guration
if the low precision is su�cient.
Based on the results, we conclude that our approach en-

ables assessing the contribution of individual analyses w.r.t.
their precision/performance trade-o�.

EnablingCompetitiveAnalyses Implementations (RQ3)
As a �nal step, we compared our best con�guration (P2 with
best supporting analyses) to the state-of-the-art in analyses
for side-e�ect free methods, ReIm [10, 11]. Table 2 shows
that our analyses outperform ReIm on two medium sized
open-source applications: Batik and Xalan. Both, precision
(we identify more purity levels than just Side E�ect Free) and
recall (we identify over 40% of as Side-E�ect Free compared
to less than 38%) have improved. This result demonstrates
that the combination of multiple analyses – enabled by our
approach – provides better precision results compared to
previous work.

5

M
os

t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

B
es

t
Su

pp
or

tin
g

A
na

ly
se

s

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses
M

os
t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

N
o

Su
pp

or
tin

g
A
na

ly
se

s 

(U
sin

g
Fa

llb
ac

ks
 ~

B
ot

to
m

)
M

os
t
B
as

ic
 P

ur
ity

 A
na

ly
sis

The precision and recall effects of an analysis using
different support analyses can easily be evaluated.

 13

Modularization of Static Analyses ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands

Analysis con�guration P2/E1/F0/L0/M1/I0 P2/E0/F0/L0/M1/I0 P2 P0/M0/I0

Pure 52 628 (20.78%) 52 602 (20.77%) 49 849 (19.68%) 11645 (4.60%)
Side E�ect Free 32 951 (13.01%) 32 964 (13.01%) 35 654 (14.08%) – –
Contextually Pure/Side E�ect Free 11 614 (4.59%) 11 459 (4.52%) 11 173 (4.41%) – –
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%) 241456 (95.40%)
Relative execution time 100% 100% 75% 15%

Table 1. Purity results (absolute number and proportion of all methods) for di�erent analysis con�gurations

We have implemented four further analyses which ag-
gregate properties across subclasses / overriding methods.
For example, independent of the scheduled purity analysis
(< None >,P0,P1,P2), we always used the same aggregat-
ing analysis to compute Virtual Method Purity . In all cases
these aggregating analyses basically just implement meet
operations over the underlying lattices and are very fast.
Therefore, only a single implementation is required.

3.3 Executing Di�erent Analysis Schedules
We executed four di�erent con�gurations of our purity anal-
yses on the Oracle JDK 8 Update 151 to test if the modulariza-
tion is e�ective and enables the trivial exchange of analyses
and also the assessment of their contributions to the overall
analysis goal. Three con�gurations execute the P2 purity
analysis. The �rst one uses the best supporting analyses
available. The second one uses the weaker (intra-procedural)
E0 analysis instead of the inter-procedural E1 analysis. The
third one does not use supporting analysis at all; in that case
all respective queries just return their fallback values. The
�nal con�guration evaluates the P0 purity analysis with the
best supporting analyses it can use.
We scheduled all aggregating analyses to compute the

properties which abstract over sets of elements whenever
we scheduled a corresponding analysis. The results for deter-
mining the methods’ purity as well as the relative runtimes
when compared to each other are given in Table 1.

3.4 Evaluation Results and Discussion
Modularization of Analyses (RQ1) Based on the case
study, we can conclude that the approach supports an e�ec-
tive modularization of analyses, where each analysis com-
putes a single well-de�ned property kind. The analyses are
also lightweight in the sense that each one is implemented
such that it analyzes each entity in isolation.
Crucially, the analyses are also easily exchangeable and

reusable. Exchanging a more precise analysis for a faster
one is a simple con�guration matter. This result enables
�ne-tuning the trade-o� between an analysis’ precision and
performance to speci�c use cases.

Assessing the Contribution of Individual Supporting
Analyses (RQ2) In our study, exchanging the E1 escape
analysis for E0 results in negligible di�erences, suggesting
that a simple, intra-procedural escape analysis is su�cient
to support our purity analysis. However, the performance
overhead is basically none for the inter-procedural E1 escape

Program Batik Xalan

ReIm
Side E�ect Free methods 6 072 (37.88%) 3 942 (37.95%)
#Analyzed methods 16 029 10 386

OPAL
Pure methods 4 009 (25.20%) 2 492 (23.15%)
Side E�ect Free (incl. Pure) methods 6 780 (42.61%) 4 390 (40.79%)
Contextually Pure/SEF methods 987 (6.20%) 748 (6.95%)
#Analyzed methods 15 911 10 763

Table 2. Purity results for Batik/Xalan

analysis. Therefore, it is still possible to use it and to get
better results.

Not executing any supporting analyses leads to 2779 meth-
ods (⇡ 5.3% of those identi�ed by the best analysis con�g-
uration) being just Side E�ect Free instead of Pure. The
decreased execution time by about 25%, however, suggests
that relying on sound fallback values – instead of executing
the supporting analyses – may be preferable for use cases
that do not require precise identi�cation of deterministic
methods. Similar to exchanging the escape analyses, it is pos-
sible to evaluate the e�ect of individual supporting analyses
in order to �ne-tune the precision/performance trade-o� to
the speci�c use case.
The P0 purity analysis is signi�cantly less precise than

any previous con�guration. It identi�es less than 5% of all
methods as Pure compared to ⇡ 20%. This analysis also does
not identify Side E�ect Free or Contextually Pure methods.
With an 85% reduced execution time - compared to the most
precise con�guration - this may still be a viable con�guration
if the low precision is su�cient.
Based on the results, we conclude that our approach en-

ables assessing the contribution of individual analyses w.r.t.
their precision/performance trade-o�.

EnablingCompetitiveAnalyses Implementations (RQ3)
As a �nal step, we compared our best con�guration (P2 with
best supporting analyses) to the state-of-the-art in analyses
for side-e�ect free methods, ReIm [10, 11]. Table 2 shows
that our analyses outperform ReIm on two medium sized
open-source applications: Batik and Xalan. Both, precision
(we identify more purity levels than just Side E�ect Free) and
recall (we identify over 40% of as Side-E�ect Free compared
to less than 38%) have improved. This result demonstrates
that the combination of multiple analyses – enabled by our
approach – provides better precision results compared to
previous work.

5

M
os

t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

B
es

t
Su

pp
or

tin
g

A
na

ly
se

s

M
os

t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

M
os

t
B
as

ic
 S

up
po

rt
in

g
A
na

ly
se

s

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

M
os

t
B
as

ic
 P

ur
ity

 A
na

ly
sis

M
os

t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

N
o

Su
pp

or
tin

g
A
na

ly
se

s 

(U
sin

g
Fa

llb
ac

ks
 ~

B
ot

to
m

)

The precision and recall effects of an analysis using
different support analyses can easily be evaluated.

 14

Modularization of Static Analyses ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands

Analysis con�guration P2/E1/F0/L0/M1/I0 P2/E0/F0/L0/M1/I0 P2 P0/M0/I0

Pure 52 628 (20.78%) 52 602 (20.77%) 49 849 (19.68%) 11645 (4.60%)
Side E�ect Free 32 951 (13.01%) 32 964 (13.01%) 35 654 (14.08%) – –
Contextually Pure/Side E�ect Free 11 614 (4.59%) 11 459 (4.52%) 11 173 (4.41%) – –
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%) 241456 (95.40%)
Relative execution time 100% 100% 75% 15%

Table 1. Purity results (absolute number and proportion of all methods) for di�erent analysis con�gurations

We have implemented four further analyses which ag-
gregate properties across subclasses / overriding methods.
For example, independent of the scheduled purity analysis
(< None >,P0,P1,P2), we always used the same aggregat-
ing analysis to compute Virtual Method Purity . In all cases
these aggregating analyses basically just implement meet
operations over the underlying lattices and are very fast.
Therefore, only a single implementation is required.

3.3 Executing Di�erent Analysis Schedules
We executed four di�erent con�gurations of our purity anal-
yses on the Oracle JDK 8 Update 151 to test if the modulariza-
tion is e�ective and enables the trivial exchange of analyses
and also the assessment of their contributions to the overall
analysis goal. Three con�gurations execute the P2 purity
analysis. The �rst one uses the best supporting analyses
available. The second one uses the weaker (intra-procedural)
E0 analysis instead of the inter-procedural E1 analysis. The
third one does not use supporting analysis at all; in that case
all respective queries just return their fallback values. The
�nal con�guration evaluates the P0 purity analysis with the
best supporting analyses it can use.
We scheduled all aggregating analyses to compute the

properties which abstract over sets of elements whenever
we scheduled a corresponding analysis. The results for deter-
mining the methods’ purity as well as the relative runtimes
when compared to each other are given in Table 1.

3.4 Evaluation Results and Discussion
Modularization of Analyses (RQ1) Based on the case
study, we can conclude that the approach supports an e�ec-
tive modularization of analyses, where each analysis com-
putes a single well-de�ned property kind. The analyses are
also lightweight in the sense that each one is implemented
such that it analyzes each entity in isolation.
Crucially, the analyses are also easily exchangeable and

reusable. Exchanging a more precise analysis for a faster
one is a simple con�guration matter. This result enables
�ne-tuning the trade-o� between an analysis’ precision and
performance to speci�c use cases.

Assessing the Contribution of Individual Supporting
Analyses (RQ2) In our study, exchanging the E1 escape
analysis for E0 results in negligible di�erences, suggesting
that a simple, intra-procedural escape analysis is su�cient
to support our purity analysis. However, the performance
overhead is basically none for the inter-procedural E1 escape

Program Batik Xalan

ReIm
Side E�ect Free methods 6 072 (37.88%) 3 942 (37.95%)
#Analyzed methods 16 029 10 386

OPAL
Pure methods 4 009 (25.20%) 2 492 (23.15%)
Side E�ect Free (incl. Pure) methods 6 780 (42.61%) 4 390 (40.79%)
Contextually Pure/SEF methods 987 (6.20%) 748 (6.95%)
#Analyzed methods 15 911 10 763

Table 2. Purity results for Batik/Xalan

analysis. Therefore, it is still possible to use it and to get
better results.

Not executing any supporting analyses leads to 2779 meth-
ods (⇡ 5.3% of those identi�ed by the best analysis con�g-
uration) being just Side E�ect Free instead of Pure. The
decreased execution time by about 25%, however, suggests
that relying on sound fallback values – instead of executing
the supporting analyses – may be preferable for use cases
that do not require precise identi�cation of deterministic
methods. Similar to exchanging the escape analyses, it is pos-
sible to evaluate the e�ect of individual supporting analyses
in order to �ne-tune the precision/performance trade-o� to
the speci�c use case.
The P0 purity analysis is signi�cantly less precise than

any previous con�guration. It identi�es less than 5% of all
methods as Pure compared to ⇡ 20%. This analysis also does
not identify Side E�ect Free or Contextually Pure methods.
With an 85% reduced execution time - compared to the most
precise con�guration - this may still be a viable con�guration
if the low precision is su�cient.
Based on the results, we conclude that our approach en-

ables assessing the contribution of individual analyses w.r.t.
their precision/performance trade-o�.

EnablingCompetitiveAnalyses Implementations (RQ3)
As a �nal step, we compared our best con�guration (P2 with
best supporting analyses) to the state-of-the-art in analyses
for side-e�ect free methods, ReIm [10, 11]. Table 2 shows
that our analyses outperform ReIm on two medium sized
open-source applications: Batik and Xalan. Both, precision
(we identify more purity levels than just Side E�ect Free) and
recall (we identify over 40% of as Side-E�ect Free compared
to less than 38%) have improved. This result demonstrates
that the combination of multiple analyses – enabled by our
approach – provides better precision results compared to
previous work.

5

M
os

t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

B
es

t
Su

pp
or

tin
g

A
na

ly
se

s

M
os

t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

M
os

t
B
as

ic
 S

up
po

rt
in

g
A
na

ly
se

s

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

M
os

t
B
as

ic
 P

ur
ity

 A
na

ly
sis

M
os

t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

N
o

Su
pp

or
tin

g
A
na

ly
se

s 

(U
sin

g
Fa

llb
ac

ks
 ~

B
ot

to
m

)

The precision and recall effects of an analysis using
different support analyses can easily be evaluated.

 15

Modularization of Static Analyses ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands

Analysis con�guration P2/E1/F0/L0/M1/I0 P2/E0/F0/L0/M1/I0 P2 P0/M0/I0

Pure 52 628 (20.78%) 52 602 (20.77%) 49 849 (19.68%) 11645 (4.60%)
Side E�ect Free 32 951 (13.01%) 32 964 (13.01%) 35 654 (14.08%) – –
Contextually Pure/Side E�ect Free 11 614 (4.59%) 11 459 (4.52%) 11 173 (4.41%) – –
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%) 241456 (95.40%)
Relative execution time 100% 100% 75% 15%

Table 1. Purity results (absolute number and proportion of all methods) for di�erent analysis con�gurations

We have implemented four further analyses which ag-
gregate properties across subclasses / overriding methods.
For example, independent of the scheduled purity analysis
(< None >,P0,P1,P2), we always used the same aggregat-
ing analysis to compute Virtual Method Purity . In all cases
these aggregating analyses basically just implement meet
operations over the underlying lattices and are very fast.
Therefore, only a single implementation is required.

3.3 Executing Di�erent Analysis Schedules
We executed four di�erent con�gurations of our purity anal-
yses on the Oracle JDK 8 Update 151 to test if the modulariza-
tion is e�ective and enables the trivial exchange of analyses
and also the assessment of their contributions to the overall
analysis goal. Three con�gurations execute the P2 purity
analysis. The �rst one uses the best supporting analyses
available. The second one uses the weaker (intra-procedural)
E0 analysis instead of the inter-procedural E1 analysis. The
third one does not use supporting analysis at all; in that case
all respective queries just return their fallback values. The
�nal con�guration evaluates the P0 purity analysis with the
best supporting analyses it can use.
We scheduled all aggregating analyses to compute the

properties which abstract over sets of elements whenever
we scheduled a corresponding analysis. The results for deter-
mining the methods’ purity as well as the relative runtimes
when compared to each other are given in Table 1.

3.4 Evaluation Results and Discussion
Modularization of Analyses (RQ1) Based on the case
study, we can conclude that the approach supports an e�ec-
tive modularization of analyses, where each analysis com-
putes a single well-de�ned property kind. The analyses are
also lightweight in the sense that each one is implemented
such that it analyzes each entity in isolation.
Crucially, the analyses are also easily exchangeable and

reusable. Exchanging a more precise analysis for a faster
one is a simple con�guration matter. This result enables
�ne-tuning the trade-o� between an analysis’ precision and
performance to speci�c use cases.

Assessing the Contribution of Individual Supporting
Analyses (RQ2) In our study, exchanging the E1 escape
analysis for E0 results in negligible di�erences, suggesting
that a simple, intra-procedural escape analysis is su�cient
to support our purity analysis. However, the performance
overhead is basically none for the inter-procedural E1 escape

Program Batik Xalan

ReIm
Side E�ect Free methods 6 072 (37.88%) 3 942 (37.95%)
#Analyzed methods 16 029 10 386

OPAL
Pure methods 4 009 (25.20%) 2 492 (23.15%)
Side E�ect Free (incl. Pure) methods 6 780 (42.61%) 4 390 (40.79%)
Contextually Pure/SEF methods 987 (6.20%) 748 (6.95%)
#Analyzed methods 15 911 10 763

Table 2. Purity results for Batik/Xalan

analysis. Therefore, it is still possible to use it and to get
better results.

Not executing any supporting analyses leads to 2779 meth-
ods (⇡ 5.3% of those identi�ed by the best analysis con�g-
uration) being just Side E�ect Free instead of Pure. The
decreased execution time by about 25%, however, suggests
that relying on sound fallback values – instead of executing
the supporting analyses – may be preferable for use cases
that do not require precise identi�cation of deterministic
methods. Similar to exchanging the escape analyses, it is pos-
sible to evaluate the e�ect of individual supporting analyses
in order to �ne-tune the precision/performance trade-o� to
the speci�c use case.
The P0 purity analysis is signi�cantly less precise than

any previous con�guration. It identi�es less than 5% of all
methods as Pure compared to ⇡ 20%. This analysis also does
not identify Side E�ect Free or Contextually Pure methods.
With an 85% reduced execution time - compared to the most
precise con�guration - this may still be a viable con�guration
if the low precision is su�cient.
Based on the results, we conclude that our approach en-

ables assessing the contribution of individual analyses w.r.t.
their precision/performance trade-o�.

EnablingCompetitiveAnalyses Implementations (RQ3)
As a �nal step, we compared our best con�guration (P2 with
best supporting analyses) to the state-of-the-art in analyses
for side-e�ect free methods, ReIm [10, 11]. Table 2 shows
that our analyses outperform ReIm on two medium sized
open-source applications: Batik and Xalan. Both, precision
(we identify more purity levels than just Side E�ect Free) and
recall (we identify over 40% of as Side-E�ect Free compared
to less than 38%) have improved. This result demonstrates
that the combination of multiple analyses – enabled by our
approach – provides better precision results compared to
previous work.

5

M
os

t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

B
es

t
Su

pp
or

tin
g

A
na

ly
se

s

M
os

t
Pr

ec
ise

 P
ur

ity
 A

na
ly

sis
 a

nd

M
os

t
B
as

ic
 S

up
po

rt
in

g
A
na

ly
se

s

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

A comparison with related work demonstrates the
effectiveness of the proposed approach.

 16

Modularization of Static Analyses ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands

Analysis con�guration P2/E1/F0/L0/M1/I0 P2/E0/F0/L0/M1/I0 P2 P0/M0/I0

Pure 52 628 (20.78%) 52 602 (20.77%) 49 849 (19.68%) 11645 (4.60%)
Side E�ect Free 32 951 (13.01%) 32 964 (13.01%) 35 654 (14.08%) – –
Contextually Pure/Side E�ect Free 11 614 (4.59%) 11 459 (4.52%) 11 173 (4.41%) – –
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%) 241456 (95.40%)
Relative execution time 100% 100% 75% 15%

Table 1. Purity results (absolute number and proportion of all methods) for di�erent analysis con�gurations

We have implemented four further analyses which ag-
gregate properties across subclasses / overriding methods.
For example, independent of the scheduled purity analysis
(< None >,P0,P1,P2), we always used the same aggregat-
ing analysis to compute Virtual Method Purity . In all cases
these aggregating analyses basically just implement meet
operations over the underlying lattices and are very fast.
Therefore, only a single implementation is required.

3.3 Executing Di�erent Analysis Schedules
We executed four di�erent con�gurations of our purity anal-
yses on the Oracle JDK 8 Update 151 to test if the modulariza-
tion is e�ective and enables the trivial exchange of analyses
and also the assessment of their contributions to the overall
analysis goal. Three con�gurations execute the P2 purity
analysis. The �rst one uses the best supporting analyses
available. The second one uses the weaker (intra-procedural)
E0 analysis instead of the inter-procedural E1 analysis. The
third one does not use supporting analysis at all; in that case
all respective queries just return their fallback values. The
�nal con�guration evaluates the P0 purity analysis with the
best supporting analyses it can use.
We scheduled all aggregating analyses to compute the

properties which abstract over sets of elements whenever
we scheduled a corresponding analysis. The results for deter-
mining the methods’ purity as well as the relative runtimes
when compared to each other are given in Table 1.

3.4 Evaluation Results and Discussion
Modularization of Analyses (RQ1) Based on the case
study, we can conclude that the approach supports an e�ec-
tive modularization of analyses, where each analysis com-
putes a single well-de�ned property kind. The analyses are
also lightweight in the sense that each one is implemented
such that it analyzes each entity in isolation.
Crucially, the analyses are also easily exchangeable and

reusable. Exchanging a more precise analysis for a faster
one is a simple con�guration matter. This result enables
�ne-tuning the trade-o� between an analysis’ precision and
performance to speci�c use cases.

Assessing the Contribution of Individual Supporting
Analyses (RQ2) In our study, exchanging the E1 escape
analysis for E0 results in negligible di�erences, suggesting
that a simple, intra-procedural escape analysis is su�cient
to support our purity analysis. However, the performance
overhead is basically none for the inter-procedural E1 escape

Program Batik Xalan

ReIm
Side E�ect Free methods 6 072 (37.88%) 3 942 (37.95%)
#Analyzed methods 16 029 10 386

OPAL
Pure methods 4 009 (25.20%) 2 492 (23.15%)
Side E�ect Free (incl. Pure) methods 6 780 (42.61%) 4 390 (40.79%)
Contextually Pure/SEF methods 987 (6.20%) 748 (6.95%)
#Analyzed methods 15 911 10 763

Table 2. Purity results for Batik/Xalan

analysis. Therefore, it is still possible to use it and to get
better results.

Not executing any supporting analyses leads to 2779 meth-
ods (⇡ 5.3% of those identi�ed by the best analysis con�g-
uration) being just Side E�ect Free instead of Pure. The
decreased execution time by about 25%, however, suggests
that relying on sound fallback values – instead of executing
the supporting analyses – may be preferable for use cases
that do not require precise identi�cation of deterministic
methods. Similar to exchanging the escape analyses, it is pos-
sible to evaluate the e�ect of individual supporting analyses
in order to �ne-tune the precision/performance trade-o� to
the speci�c use case.
The P0 purity analysis is signi�cantly less precise than

any previous con�guration. It identi�es less than 5% of all
methods as Pure compared to ⇡ 20%. This analysis also does
not identify Side E�ect Free or Contextually Pure methods.
With an 85% reduced execution time - compared to the most
precise con�guration - this may still be a viable con�guration
if the low precision is su�cient.
Based on the results, we conclude that our approach en-

ables assessing the contribution of individual analyses w.r.t.
their precision/performance trade-o�.

EnablingCompetitiveAnalyses Implementations (RQ3)
As a �nal step, we compared our best con�guration (P2 with
best supporting analyses) to the state-of-the-art in analyses
for side-e�ect free methods, ReIm [10, 11]. Table 2 shows
that our analyses outperform ReIm on two medium sized
open-source applications: Batik and Xalan. Both, precision
(we identify more purity levels than just Side E�ect Free) and
recall (we identify over 40% of as Side-E�ect Free compared
to less than 38%) have improved. This result demonstrates
that the combination of multiple analyses – enabled by our
approach – provides better precision results compared to
previous work.

5

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

A comparison with related work demonstrates the
effectiveness of the proposed approach.

 17

Modularization of Static Analyses ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands

Analysis con�guration P2/E1/F0/L0/M1/I0 P2/E0/F0/L0/M1/I0 P2 P0/M0/I0

Pure 52 628 (20.78%) 52 602 (20.77%) 49 849 (19.68%) 11645 (4.60%)
Side E�ect Free 32 951 (13.01%) 32 964 (13.01%) 35 654 (14.08%) – –
Contextually Pure/Side E�ect Free 11 614 (4.59%) 11 459 (4.52%) 11 173 (4.41%) – –
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%) 241456 (95.40%)
Relative execution time 100% 100% 75% 15%

Table 1. Purity results (absolute number and proportion of all methods) for di�erent analysis con�gurations

We have implemented four further analyses which ag-
gregate properties across subclasses / overriding methods.
For example, independent of the scheduled purity analysis
(< None >,P0,P1,P2), we always used the same aggregat-
ing analysis to compute Virtual Method Purity . In all cases
these aggregating analyses basically just implement meet
operations over the underlying lattices and are very fast.
Therefore, only a single implementation is required.

3.3 Executing Di�erent Analysis Schedules
We executed four di�erent con�gurations of our purity anal-
yses on the Oracle JDK 8 Update 151 to test if the modulariza-
tion is e�ective and enables the trivial exchange of analyses
and also the assessment of their contributions to the overall
analysis goal. Three con�gurations execute the P2 purity
analysis. The �rst one uses the best supporting analyses
available. The second one uses the weaker (intra-procedural)
E0 analysis instead of the inter-procedural E1 analysis. The
third one does not use supporting analysis at all; in that case
all respective queries just return their fallback values. The
�nal con�guration evaluates the P0 purity analysis with the
best supporting analyses it can use.
We scheduled all aggregating analyses to compute the

properties which abstract over sets of elements whenever
we scheduled a corresponding analysis. The results for deter-
mining the methods’ purity as well as the relative runtimes
when compared to each other are given in Table 1.

3.4 Evaluation Results and Discussion
Modularization of Analyses (RQ1) Based on the case
study, we can conclude that the approach supports an e�ec-
tive modularization of analyses, where each analysis com-
putes a single well-de�ned property kind. The analyses are
also lightweight in the sense that each one is implemented
such that it analyzes each entity in isolation.
Crucially, the analyses are also easily exchangeable and

reusable. Exchanging a more precise analysis for a faster
one is a simple con�guration matter. This result enables
�ne-tuning the trade-o� between an analysis’ precision and
performance to speci�c use cases.

Assessing the Contribution of Individual Supporting
Analyses (RQ2) In our study, exchanging the E1 escape
analysis for E0 results in negligible di�erences, suggesting
that a simple, intra-procedural escape analysis is su�cient
to support our purity analysis. However, the performance
overhead is basically none for the inter-procedural E1 escape

Program Batik Xalan

ReIm
Side E�ect Free methods 6 072 (37.88%) 3 942 (37.95%)
#Analyzed methods 16 029 10 386

OPAL
Pure methods 4 009 (25.20%) 2 492 (23.15%)
Side E�ect Free (incl. Pure) methods 6 780 (42.61%) 4 390 (40.79%)
Contextually Pure/SEF methods 987 (6.20%) 748 (6.95%)
#Analyzed methods 15 911 10 763

Table 2. Purity results for Batik/Xalan

analysis. Therefore, it is still possible to use it and to get
better results.

Not executing any supporting analyses leads to 2779 meth-
ods (⇡ 5.3% of those identi�ed by the best analysis con�g-
uration) being just Side E�ect Free instead of Pure. The
decreased execution time by about 25%, however, suggests
that relying on sound fallback values – instead of executing
the supporting analyses – may be preferable for use cases
that do not require precise identi�cation of deterministic
methods. Similar to exchanging the escape analyses, it is pos-
sible to evaluate the e�ect of individual supporting analyses
in order to �ne-tune the precision/performance trade-o� to
the speci�c use case.
The P0 purity analysis is signi�cantly less precise than

any previous con�guration. It identi�es less than 5% of all
methods as Pure compared to ⇡ 20%. This analysis also does
not identify Side E�ect Free or Contextually Pure methods.
With an 85% reduced execution time - compared to the most
precise con�guration - this may still be a viable con�guration
if the low precision is su�cient.
Based on the results, we conclude that our approach en-

ables assessing the contribution of individual analyses w.r.t.
their precision/performance trade-o�.

EnablingCompetitiveAnalyses Implementations (RQ3)
As a �nal step, we compared our best con�guration (P2 with
best supporting analyses) to the state-of-the-art in analyses
for side-e�ect free methods, ReIm [10, 11]. Table 2 shows
that our analyses outperform ReIm on two medium sized
open-source applications: Batik and Xalan. Both, precision
(we identify more purity levels than just Side E�ect Free) and
recall (we identify over 40% of as Side-E�ect Free compared
to less than 38%) have improved. This result demonstrates
that the combination of multiple analyses – enabled by our
approach – provides better precision results compared to
previous work.

5

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

A comparison with related work demonstrates the
effectiveness of the proposed approach.

 18

Modularization of Static Analyses ISSTA Companion/ECOOP Companion’18 , July 16–21, 2018, Amsterdam, Netherlands

Analysis con�guration P2/E1/F0/L0/M1/I0 P2/E0/F0/L0/M1/I0 P2 P0/M0/I0

Pure 52 628 (20.78%) 52 602 (20.77%) 49 849 (19.68%) 11645 (4.60%)
Side E�ect Free 32 951 (13.01%) 32 964 (13.01%) 35 654 (14.08%) – –
Contextually Pure/Side E�ect Free 11 614 (4.59%) 11 459 (4.52%) 11 173 (4.41%) – –
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%) 241456 (95.40%)
Relative execution time 100% 100% 75% 15%

Table 1. Purity results (absolute number and proportion of all methods) for di�erent analysis con�gurations

We have implemented four further analyses which ag-
gregate properties across subclasses / overriding methods.
For example, independent of the scheduled purity analysis
(< None >,P0,P1,P2), we always used the same aggregat-
ing analysis to compute Virtual Method Purity . In all cases
these aggregating analyses basically just implement meet
operations over the underlying lattices and are very fast.
Therefore, only a single implementation is required.

3.3 Executing Di�erent Analysis Schedules
We executed four di�erent con�gurations of our purity anal-
yses on the Oracle JDK 8 Update 151 to test if the modulariza-
tion is e�ective and enables the trivial exchange of analyses
and also the assessment of their contributions to the overall
analysis goal. Three con�gurations execute the P2 purity
analysis. The �rst one uses the best supporting analyses
available. The second one uses the weaker (intra-procedural)
E0 analysis instead of the inter-procedural E1 analysis. The
third one does not use supporting analysis at all; in that case
all respective queries just return their fallback values. The
�nal con�guration evaluates the P0 purity analysis with the
best supporting analyses it can use.
We scheduled all aggregating analyses to compute the

properties which abstract over sets of elements whenever
we scheduled a corresponding analysis. The results for deter-
mining the methods’ purity as well as the relative runtimes
when compared to each other are given in Table 1.

3.4 Evaluation Results and Discussion
Modularization of Analyses (RQ1) Based on the case
study, we can conclude that the approach supports an e�ec-
tive modularization of analyses, where each analysis com-
putes a single well-de�ned property kind. The analyses are
also lightweight in the sense that each one is implemented
such that it analyzes each entity in isolation.
Crucially, the analyses are also easily exchangeable and

reusable. Exchanging a more precise analysis for a faster
one is a simple con�guration matter. This result enables
�ne-tuning the trade-o� between an analysis’ precision and
performance to speci�c use cases.

Assessing the Contribution of Individual Supporting
Analyses (RQ2) In our study, exchanging the E1 escape
analysis for E0 results in negligible di�erences, suggesting
that a simple, intra-procedural escape analysis is su�cient
to support our purity analysis. However, the performance
overhead is basically none for the inter-procedural E1 escape

Program Batik Xalan

ReIm
Side E�ect Free methods 6 072 (37.88%) 3 942 (37.95%)
#Analyzed methods 16 029 10 386

OPAL
Pure methods 4 009 (25.20%) 2 492 (23.15%)
Side E�ect Free (incl. Pure) methods 6 780 (42.61%) 4 390 (40.79%)
Contextually Pure/SEF methods 987 (6.20%) 748 (6.95%)
#Analyzed methods 15 911 10 763

Table 2. Purity results for Batik/Xalan

analysis. Therefore, it is still possible to use it and to get
better results.

Not executing any supporting analyses leads to 2779 meth-
ods (⇡ 5.3% of those identi�ed by the best analysis con�g-
uration) being just Side E�ect Free instead of Pure. The
decreased execution time by about 25%, however, suggests
that relying on sound fallback values – instead of executing
the supporting analyses – may be preferable for use cases
that do not require precise identi�cation of deterministic
methods. Similar to exchanging the escape analyses, it is pos-
sible to evaluate the e�ect of individual supporting analyses
in order to �ne-tune the precision/performance trade-o� to
the speci�c use case.
The P0 purity analysis is signi�cantly less precise than

any previous con�guration. It identi�es less than 5% of all
methods as Pure compared to ⇡ 20%. This analysis also does
not identify Side E�ect Free or Contextually Pure methods.
With an 85% reduced execution time - compared to the most
precise con�guration - this may still be a viable con�guration
if the low precision is su�cient.
Based on the results, we conclude that our approach en-

ables assessing the contribution of individual analyses w.r.t.
their precision/performance trade-o�.

EnablingCompetitiveAnalyses Implementations (RQ3)
As a �nal step, we compared our best con�guration (P2 with
best supporting analyses) to the state-of-the-art in analyses
for side-e�ect free methods, ReIm [10, 11]. Table 2 shows
that our analyses outperform ReIm on two medium sized
open-source applications: Batik and Xalan. Both, precision
(we identify more purity levels than just Side E�ect Free) and
recall (we identify over 40% of as Side-E�ect Free compared
to less than 38%) have improved. This result demonstrates
that the combination of multiple analyses – enabled by our
approach – provides better precision results compared to
previous work.

5

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

The framework enables…

• fine-grained modularization

• assessing the contribution of supporting analyses on a
primary analysis

• inherent parallelization

• on-demand computations

• laziness by refining upper and lower bounds

 19

Lattice Based Modularization of Static Analyses
Michael Eichberg, Florian Kübler, Dominik Helm, Michael Reif, Guido Salvaneschi and Mira Mezini

www.opal-project.de

http://www.opal-project.de

