Lattice Based Modularization of Static Analyses

Michael Eichberg, Florian Kiibler, Dominik Helm, Michael Reif, Guido Salvaneschi and Mira Mezini

TECHNISCHE
UNIVCRSITAT
DARMSTADT

The Initial Challenge (aka Research Question)

What do we need to prove that instances of

java.lang.String are immutable.

We need to model the

public final class String extends Traversable<Byte
effect of (selected)

private final byte[| buf;
native methods.

private int hash;

public String(byte[] buf) { this.buf = Arrays.copyOf(buf, buf.length); }
String(byte[] buf, boolean cloned) { assert (cloned); this.buf = buf; }

©@Override public int hashCode We need points-to/

if (this.hash == 0) We need to
int hash = 0; understand lazy
for (byte v : buf) { hJEELIMEUFLYAC
this.hash = hash; patterns.

}

return this.hash:

;o

escape information.

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

What do we need to prove that instances of

java.lang.String are immutable.

We need to model the

C _+ _C f_ _ 1 _ 5 _ 1\

public final class String extends Traversable<Byte
Too much for one analysis.

Req. 1: the “overall” analysis has to be modularized

Reqg. 2: we have to facilitate incremental development

(we can't develop all analyses in one step; we need to be able to test parts of it!)

Req. 3: only compute required information (efficiently)

We need a framework for the efficient execution of independently

developed, but mutually dependent fix-point computations.

return this.hash;:

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

Based on the theoretical foundations of fix-point
computations on lattices, we developed a Scala based
framework to develop strictly modularized static analyses.

We use lattices as the inter-analyses interfaces.

Lattices related to

independent properties

derived/ . .
~— (e.g. mutability, purity,
| y compute
c'ajsz;:D/'Z:Eab"'ty{ return value freshness,
. e { thrown exceptions...)
© Result =
}
} %g
N
det'l‘fed/ T
e
Comp“
class Purity {
def analyze(
e : Method
) : Result = {
}
}
Used

The lattices represent
Independent analyses ,
the interface!

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

Analyses are basically just a simple Scala function.

def (e: Entity): ComputationResult

type ComputationResult =

(Entity, Property, Dependees, OnUpdateContinuation)

type Dependees = Traversable[(Entity, PropertyKind)]

type OnUpdateContinuation =
(Entity, Property, State) => ComputationResult

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

Example: Computing the purity for “getA”.

class X {

drivate int a;

oublic X(int a) { this.a = a; }
oublic int getA() { return this.a; }

C
Q
<
o
O
O
Q
®

1. analyze(getA) =>

p=Pure, dependees=(X.a|FieldMutability),c=<cont. >
2. (computation of the field mutability)
3. c(X.a,EffectivelyFinal,Final) =>

p=Pure, dependees={}, c=N/A

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

Handling cyclic computations.

def foo() {bar()}
def bar() {foo()}

iresult:pure

bar(foo()

r
AQ _/2/"

\\ 14

1resu1t pure

~ /
~ 7

-~ A’
result:pure
cycle resolution after step 3

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

Does it work?

(Implicit) dependencies between the 10 basic analyses + 4

supporting analyses developed to evaluate the framework.

1
\LPE(
Virtual Method

|

(0)] | ,
, |

\)|(0) | /
Type Immutability :

-
I
I
I
I
I

Kouopuada(T o1odD) xo1dwion

I

I

I

| \ PP(L2) &
I

I

I

Virtual Method | F(0)Return Value Freshness
Purity | \ PF(0)

] |
| |
--------- ! : Virtual Method :
: Return Value Freshness :

Michael Eichberg et al. =T sased Modularization of Static™z

11

The precision and recall effects of an analysis using

different support analyses can easily be evaluated.

$
>
2
S 2
Y S
& T
§§
2§
o8
0
5 @
N
%
Ch
Analysis configuration P2/E1/F0/L0/M1/10
Pure 52 628 (20.78%)
Side Effect Free 32951 (13.01%)
Contextually Pure/Side Effect Free 11614 (4.59%)
Impure 156 089 (61.63%)
Relative execution time 100%

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

The precision and recall effects of an analysis using

different support analyses can easily be evaluated.

D
S F
o SN
> & S &
'\‘,Ab % > S
Y& T Y
S o X &
N S A S
A Y SIS
L & S
S v
poS
Q/ é&’ Q §
§ & §F 2
: O
o R T
< @ & &
R x w
S o9 S &
C o
Analysis configuration P2/E1/F0/L0/M1/10 P2/E0/F0/L0/M1/10

Pure

Side Effect Free

Contextually Pure/Side Effect Free
Impure

Relative execution time

52 628 (20.78%)
32951 (13.01%)
11614 (4.59%)
156 089 (61.63%)
100%

52 602 (20.77%)
32964 (13.01%)
11459 (4.52%)
156 257 (61.69%)
100%

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

13

The precision and recall effects of an analysis using

different support analyses can easily be evaluated.

>

s §F &

o ¢ 2
$ & S £
> 8 Ay ~
S I o A
> & Y o ;3

N XN A S N5/ Q
& 38 & VR
~ S o N ¢
S @Q Af) S .Qéo %
R $ S R & ¥
g R $ @ g &
o N~ R
S R T ¥ S Q.
§ @ ¢ & NS
)
R x < R* S &
s Jool & § 0&? = @5
o
< S ¥ 8
Analysis configuration P2/E1/F0/L0/M1/10 P2/E0/F0/L0/M1/10 P2
Pure 52 628 (20.78%) 52602 (20.77%) 49 849 (19.68%)
Side Effect Free 32951 (13.01%) 32964 (13.01%) 35654 (14.08%)
Contextually Pure/Side Effect Free 11614 (4.59%) 11459 (4.52%) 11173 (4.41%)
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%)
Relative execution time 100% 100% 75%

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

The precision and recall effects of an analysis using

different support analyses can easily be evaluated.

& 5y & &
@m £ A? @q,
N o @ N N
S & S S &> ol
AN N 7L & N
S 9 < g 59 N
Y S S v &S 5
Aol % N < .9 <
S $ o S YR
N &3 > 2 A
S < & $.$ & 2
R £ o RS 3 S
o 3 % D o &F R
5 3 5 RS o
S R T ¥ SENOP; oS
Y oA N S &
5 ? & ¥ »5’ o .$° »:b
J s .
§ & E § & §
< <~ SR S
Analysis configuration P2/E1/F0/L0/M1/10 P2/E0/F0/L0/M1/10 P2 P0/M0/10
Pure 52 628 (20.78%) 52602 (20.77%) 49849 (19.68%) 11645 (4.60%)
Side Effect Free 32951 (13.01%) 32964 (13.01%) 35654 (14.08%) - -
Contextually Pure/Side Effect Free 11614 (4.59%) 11459 (4.52%) 11173 (4.41%) - -
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%) 241456 (95.40%)
Relative execution time 100% 100% 75% 15%

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses 15

A comparison with related work demonstrates the

effectiveness of the proposed approach.

Program

Relm
Side Effect Free methods
#Analyzed methods

OPAL

Side Effect Free (incl. Pure) methods

#Analyzed methods

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

16

A comparison with related work demonstrates the

effectiveness of the proposed approach.

Program Batik
Relm

Side Effect Free methods 6072 (37.88%)
#Analyzed methods 16 029
OPAL

Side Effect Free (incl. Pure) methods 6780 (42.61%)

#Analyzed methods 15911

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

17

A comparison with related work demonstrates the

effectiveness of the proposed approach.

Program Batik Xalan
Relm

Side Effect Free methods 6072 (37.88%) 3942 (37.95%)
#Analyzed methods 16 029 10386
OPAL

Side Effect Free (incl. Pure) methods 6780 (42.61%)

#Analyzed methods 15911

4390 (40.79%)

10763

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

18

The framework enables...

* fine-grained modularization

* assessing the contribution of supporting analyses on a

primary analysis
* inherent parallelization
* on-demand computations

* laziness by refining upper and lower bounds

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

19

Lattice Based Modularization of Static Analyses

Michael Eichberg, Florian Kiibler, Dominik Helm, Michael Reif, Guido Salvaneschi and Mira Mezini

www.opal-project.de

http://www.opal-project.de

