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The Initial Challenge (aka Research Question)



What do we need to prove that instances of

java.lang.String are immutable.

We need to model the

public final class String extends Traversable<Byte
effect of (selected)

private final byte[| buf;
native methods.

private int hash;

public String(byte[] buf) { this.buf = Arrays.copyOf(buf, buf.length); }
String(byte[] buf, boolean cloned) { assert (cloned); this.buf = buf; }

©@Override public int hashCode We need points-to/

if (this.hash == 0) We need to
int hash = 0; understand lazy
for (byte v : buf) { hJEELIMEUFLYAC
this.hash = hash; patterns.

}

return this.hash:

;o

escape information.
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What do we need to prove that instances of

java.lang.String are immutable.

We need to model the

_C_ _+ _C f_ _ 1 _ 5 _ 1\

public final class String extends Traversable<Byte
Too much for one analysis.

Req. 1: the “overall” analysis has to be modularized

Reqg. 2: we have to facilitate incremental development

(we can't develop all analyses in one step; we need to be able to test parts of it!)

Req. 3: only compute required information (efficiently)

We need a framework for the efficient execution of independently

developed, but mutually dependent fix-point computations.

return this.hash;:
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Based on the theoretical foundations of fix-point
computations on lattices, we developed a Scala based
framework to develop strictly modularized static analyses.

We use lattices as the inter-analyses interfaces.



Lattices related to

independent properties

derived/ . .
~— (e.g. mutability, purity,
| y compute
c'ajsz;:D/'Z:Eab"'ty{ return value freshness,
. e { thrown exceptions...)
© Result =
}
} %g
N
det'l‘fed/ T
e
Comp“
class Purity {
def analyze(
e : Method
) : Result = {
}
}
Used

The lattices represent
Independent analyses ,
the interface!
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Analyses are basically just a simple Scala function.

def (e: Entity): ComputationResult

type ComputationResult =

(Entity, Property, Dependees, OnUpdateContinuation)

type Dependees = Traversable[(Entity, PropertyKind)]

type OnUpdateContinuation =
(Entity, Property, State) => ComputationResult
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Example: Computing the purity for “getA”.

class X {

drivate int a;

oublic X(int a) { this.a = a; }
oublic int getA() { return this.a; }

C
Q
<
o
O
O
Q
®

1. analyze(getA) =>

p=Pure, dependees=(X.a|FieldMutability),c=<cont. >
2. (computation of the field mutability)
3. c(X.a,EffectivelyFinal,Final) =>

p=Pure, dependees={}, c=N/A
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Handling cyclic computations.

def foo() {bar()}
def bar() {foo()}

iresult:pure

bar( foo()

r
AQ \_/2/"

\\ 14

1resu1t pure

~ /
~ 7

-~ A’
result:pure
cycle resolution after step 3
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Does it work?



(Implicit) dependencies between the 10 basic analyses + 4

supporting analyses developed to evaluate the framework.
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The precision and recall effects of an analysis using

different support analyses can easily be evaluated.
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Analysis configuration P2/E1/F0/L0/M1/10
Pure 52 628 (20.78%)
Side Effect Free 32951 (13.01%)
Contextually Pure/Side Effect Free 11614 (4.59%)
Impure 156 089 (61.63%)
Relative execution time 100%
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The precision and recall effects of an analysis using

different support analyses can easily be evaluated.

D
S F
o SN
> & S &
'\‘,Ab % > S
Y& T Y
S o X &
N S A S
A Y SIS
L & S
S v
poS
Q/ é&’ Q §
§ & §F 2
: O
o R T
< @ & &
R x w
S o9 S &
C o
Analysis configuration P2/E1/F0/L0/M1/10  P2/E0/F0/L0/M1/10

Pure

Side Effect Free

Contextually Pure/Side Effect Free
Impure

Relative execution time

52 628 (20.78%)
32951 (13.01%)
11614 (4.59%)
156 089 (61.63%)
100%

52 602 (20.77%)
32964 (13.01%)
11459 (4.52%)
156 257 (61.69%)
100%
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The precision and recall effects of an analysis using

different support analyses can easily be evaluated.
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Analysis configuration P2/E1/F0/L0/M1/10  P2/E0/F0/L0/M1/10 P2
Pure 52 628 (20.78%) 52602 (20.77%) 49 849 (19.68%)
Side Effect Free 32951 (13.01%) 32964 (13.01%) 35654 (14.08%)
Contextually Pure/Side Effect Free 11614 (4.59%) 11459 (4.52%) 11173 (4.41%)
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%)
Relative execution time 100% 100% 75%
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The precision and recall effects of an analysis using

different support analyses can easily be evaluated.
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Analysis configuration P2/E1/F0/L0/M1/10  P2/E0/F0/L0/M1/10 P2 P0/M0/10
Pure 52 628 (20.78%) 52602 (20.77%) 49849 (19.68%) 11645 (4.60%)
Side Effect Free 32951 (13.01%) 32964 (13.01%) 35654 (14.08%) - -
Contextually Pure/Side Effect Free 11614 (4.59%) 11459 (4.52%) 11173 (4.41%) - -
Impure 156 089 (61.63%) 156 257 (61.69%) 156 606 (61.83%) 241456 (95.40%)
Relative execution time 100% 100% 75% 15%
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A comparison with related work demonstrates the

effectiveness of the proposed approach.

Program

Relm
Side Effect Free methods
#Analyzed methods

OPAL

Side Effect Free (incl. Pure) methods

#Analyzed methods

Michael Eichberg et al. - Lattice Based Modularization of Static Analyses

16



A comparison with related work demonstrates the

effectiveness of the proposed approach.

Program Batik
Relm

Side Effect Free methods 6072 (37.88%)
#Analyzed methods 16 029
OPAL

Side Effect Free (incl. Pure) methods 6780 (42.61%)

#Analyzed methods 15911
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A comparison with related work demonstrates the

effectiveness of the proposed approach.

Program Batik Xalan
Relm

Side Effect Free methods 6072 (37.88%) 3942 (37.95%)
#Analyzed methods 16 029 10386
OPAL

Side Effect Free (incl. Pure) methods 6780 (42.61%)

#Analyzed methods 15911

4390 (40.79%)

10763
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The framework enables...

* fine-grained modularization

* assessing the contribution of supporting analyses on a

primary analysis
* inherent parallelization
* on-demand computations

* laziness by refining upper and lower bounds
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